• Title/Summary/Keyword: infectious cDNA

Search Result 101, Processing Time 0.032 seconds

Molecular Differentiation of Opisthorchis viverrini and Clonorchis sinensis Eggs by Multiplex Real-Time PCR with High Resolution Melting Analysis

  • Kaewkong, Worasak;Intapan, Pewpan M.;Sanpool, Oranuch;Janwan, Penchom;Thanchomnang, Tongjit;Laummaunwai, Porntip;Lulitanond, Viraphong;Doanh, Pham Ngoc;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.689-694
    • /
    • 2013
  • Opisthorchis viverrini and Clonorchis sinensis are parasites known to be carcinogenic and causative agents of cholangiocarcinoma in Asia. The standard method for diagnosis for those parasite infections is stool examination to detect parasite eggs. However, the method has low sensitivity, and eggs of O. viverrini and C. sinensis are difficult to distinguish from each other and from those of some other trematodes. Here, we report a multiplex real-time PCR coupled with high resolution melting (HRM) analysis for the differentiation of O. viverrini and C. sinensis eggs in fecal samples. Using 2 pairs of species-specific primers, DNA sequences from a portion of the mitochondrial NADH dehydrogenase subunit 2 (nad 2) gene, were amplified to generate 209 and 165 bp products for O. viverrini and C. sinensis, respectively. The distinct characteristics of HRM patterns were analyzed, and the melting temperatures peaked at $82.4{\pm}0.09^{\circ}C$ and $85.9{\pm}0.08^{\circ}C$ for O. viverrini and C. sinensis, respectively. This technique was able to detect as few as 1 egg of O. viverrini and 2 eggs of C. sinensis in a 150 mg fecal sample, which is equivalent to 7 and 14 eggs per gram of feces, respectively. The method is species-specific, rapid, simple, and does not require fluorescent probes or post-PCR processing for discrimination of eggs of the 2 species. It offers a new tool for differentiation and detection of Asian liver fluke infections in stool specimens.

Interleukin-18 Binding Protein (IL-18BP): A Long Journey From Discovery to Clinical Application

  • Soohyun Kim;Hyeon Yu;Tania Azam;Charles A. Dinarello
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2024
  • IL-18 binding protein (IL-18BP) was originally discovered in 1999 while attempting to identify an IL-18 receptor ligand binding chain (also known as IL-18Rα) by subjecting concentrated human urine to an IL-18 ligand affinity column. The IL-18 ligand chromatography purified molecule was analyzed by protein microsequencing. The result revealed a novel 40 amino acid polypeptide. To isolate the complete open reading frame (ORF), various human and mouse cDNA libraries were screened using cDNA probe derived from the novel IL-18 affinity column bound molecule. The identified entire ORF gene was thought to be an IL-18Rα gene. However, IL-18BP has been proven to be a unique soluble antagonist that shares homology with a variety of viral proteins that are distinct from the IL-18Rα and IL-18Rβ chains. The IL-18BP cDNA was used to generate recombinant IL-18BP (rIL-18BP), which was indispensable for characterizing the role of IL-18BP in vitro and in vivo. Mammalian cell lines were used to produce rIL-18BP due to its glycosylation-dependent activity of IL-18BP (approximately 20 kDa). Various forms of rIL-18BP, intact, C-terminal his-tag, and Fc fusion proteins were produced for in vitro and in vivo experiments. Data showed potent neutralization of IL-18 activity, which seems promising for clinical application in immune diseases involving IL-18. However, it was a long journey from discovery to clinical use although there have been various clinical trials since IL-18BP was discovered in 1999. This review primarily covers the discovery of IL-18BP along with how basic research influences the clinical development of IL-18BP.

Construction of CpG Motif-enriched DNA Vaccine Plasmids for Enhanced Early Immune Response

  • Park Young Seoub;Hwang Seung Ha;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • A DNA vaccine methodology using eukaryote expression vectors to produce immunizing proteins in the vaccinated hosts is a novel approach to the development of vaccine and immuno-therapeutics, and it has achieved considerable success over several infectious diseases and various cancers. To further enhance its efficiency, attempts were made to develop novel plasmid vectors containing multiple immunostimulatory CpG motifs, for rapid and strong immune response. First, a 2.9 kb compact plasmid vector (pVAC), containing CMV promoter, polycloning site, BGH poly(A) terminator, ampicillin resistance gene and pBR322 origin was constructed. A pVAC-hEPO was also constructed, which contained a human erythropoietin gene, for evaluating the transfection efficiency of naked plasmid DNA both in vitro and in vivo. To examine the adjuvant effect of multi-CpG motifs on naked plasmid DNA, 22 and 44 enriched and unmethylated CpG motifs were introduced into pVAC to generate pVAC-ISS1 and pVAC-ISS2, respectively. $100{\mu}g$ of pSecTagB, pVAC, pVAC-ISS1 or pVAC-ISS2 were each injected intramuscularly into the tibilias anterior muscle of Balb/c mice. The level of interleukin-6 induced in the mice injected with pVAC-ISS1 and pVAC-ISS2 were significantly elevated after 12 hours, which were almost 2 and 2.5 times higher than that in the mice injected with pSecTagB, respectively. These results suggest that DNA vaccine plasmids with enriched CpG motifs can induce rapid secretion of interleukin-6 by lymphocytes. In conclusion, these vectors can contribute to the development of adjuvant-free DNA vaccinations against infectious diseases and various cancers.

Optimization of a Diagnostic DNA Chip for Fish Rhabdovirus

  • Kim Young Ju;Kang Ji Hee;Kim Su Mi;Park Soo Il;Kim Sang Bong;Lee Myung Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • A DNA chip that rapidly and accurately detects the viral genes in rhabdovirus-infected fish was developed. The N, Ml, and G proteins of three rhabdovirus strains, infectious hematopoietic necrosis virus (IHNV), viral hemorrhagic septicemia virus (VHSV), and flounder rhabdovirus (HIRRV), were selected for use as probes. The sequences of the corresponding genes were obtained, and probes were prepared by PCR using specific primer sets. The specificity of the probes was confirmed by cross PCR. The prepared probes were spotted on poly-L-lysine- or aminosilane-coated glass slides and hybridized with target DNA under several different conditions in order to determine the optimal hybridization temperature, glass-slide coating, and target cDNA concentration.

Pathogenicity of infectious in vitro transcripts and comparison of RNA3 of Alfalfa mosaic virus Korean isolates

  • J.H. Ha;Park, J.K.;K.H. Ryu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.146.2-147
    • /
    • 2003
  • Two Korean isolates of Alfalfa mosaic virus (AHV-AZ, AMV-KR) were isolated from azuki bean and potato plants, respectively, and their pathologies were confirmed on some susceptible host plants including pepper, tobacco and red bean plants. Full length cDNAs to RNA1, RNA2 and RNA3 of the two Korean strains were amplified using the long-template reverse transcription (RT)-polymerase chain reaction (PCR) method. RT-PCR products covering entire regions for the three AMV genome RNAs were cloned. RNA transcripts were synthesized in vitro from each clones using T7 RNA polymerase and infectivity test was peformed in 9 reassortment sets of transcripts. All the combinations of reassorted transcripts were found to be infectious when inoculated onto Nicotiana benthamiana plants, and were not distinguishable to those of wild types. The full-length cDNA clones that were confirmed infectious were sequenced their nucleotide sequences. We will discuss sequence analysis of the two Korean isolates of AMV genomic RNA3 and compare reported foreign isolates of AMV.

  • PDF

Detection of Fish Virus by Using Immunomagnetic Separation and Polymerase Chain Reaction (IMS-PCR)

  • KIM Soo Jin;OH Hae Keun;CHOI Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.948-955
    • /
    • 1997
  • Immunomagnetic separation of virus coupled with .reverse transcription-polymerase chain reaction (IMS-PCR) was performed with infectious hematopoietic necrosis virus (IHNV). A DNA fragment of expected size was synthesized in the RT-PCR with total RNA extracted from IHNV inoculated CHSE-214. In a SDS-PAGE analysis, a protein band of over 70kDa was detected from non-infected cells and cells inoculated with IHNV and infectious pancreatic necrosis virus (IPNV). This protein was detected in the Western blot analysis probably because of non-specific reaction to monoclonal antibody against IHNV nucleocapsid protein. In the immunomagnetic separation, magnetic beads coated with monoclonal antibody against the IHNV nucleocapsid protein was incubated with supernatant from IHNV inoculated CHSE-214 cells. During this process, the non-specifically reacting protein could be removed by washing the magnetic bead with PBS in the presence of an external magnetic field, and viral proteins were detected from the remaining, cleaned magnetic beads. It was necessary to extract viral RNA from the captured virus particles before RT-PCR, and no DNA product was detected when the captured virus was only heated 5 min at $95^{\circ}C$. A PCR-product of expected size was synthesized from IMS-PCR with magnetic beads double coated either by goat anti-mouse IgG antibody -monoclonal antibody or streptavidin - biotin conjugated monoclonal antibody.

  • PDF

Generation of an Infectious Clone of a New Korean Isolate of Apple chlorotic leaf spot virus Driven by Dual 35S and T7 Promoters in a Versatile Binary Vector

  • Kim, Ik-Hyun;Han, Jae-Yeong;Cho, In-Sook;Ju, HyeKyoung;Moon, Jae Sun;Seo, Eun-Young;Kim, Hong Gi;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacteriophage T7 RNA promoter and the Cauliflower mosaic virus 35S promoter. Chenopodium quinoa was successfully infected using in vitro transcripts synthesized using the T7 promoter, detected at 20 days post inoculation (dpi), but did not produce obvious symptoms. Nicotiana occidentalis and C. quinoa were inoculated through agroinfiltration. At 32 dpi the infection rate was evaluated; no C. quinoa plants were infected by agroinfiltration, but infection of N. occidentalis was obtained.

Plant Disease Caused by Cucumber Mosaic Cucumovirus - Potential Role of Genes Associated with Symptom - (Cucumber Mosaic Cucumovirus에 의한 식물의 병 - 병징관련 유전자의 기능을 중심으로 -)

  • 최장경;김혜자
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Cucumber mosaic cucumovirus (CMV) is an isometric plant virus with functionally divided genomic RNAs and a broad host range. RNA 1 and RNA 2 each encode one protein, both of which are essential for replication. RNA 3 encodes the viral coat protein and an additional protein thought to be involved in potentiating the cell-to-cell movement of the virus. Functions of the RNAs have been confirmed using a pseudorecombinant virus constructed with infectious cDNA-derived transcripts of the RNAs. Generally, CMV produces different symptoms in various host plants depending on the virus strains. In this mini-review, we describe the potential role of the genes associated with symptom expression of CMV RNAs.

  • PDF