• Title/Summary/Keyword: infection model

Search Result 734, Processing Time 0.026 seconds

Multi-host Pathogenesis by Pseudomonas aeruginosa and Use of Drosophila melanogaster as a New Model Host

  • Cho You-Hee;Lau Gee;Rahme Laurence
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.40-50
    • /
    • 2002
  • Fruit fly, Drosophila melanogaster has developed efficient immune mechanisms to prevent microbial infection, which are consisted of cellular and humoral responses. During the systemic or local infection, two distinct pathways (Toll and Imd) play major roles in antimicrobial peptide synthesis. The Toll pathway is required to defend Gram-positive bacterial and fungal infections, whereas the Imd pathway is important in Gram-negative bacterial infection. We have shown that the infection of the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa strain PA14 (PA14) into fly dorsal thorax can kill the flies within 48 h ($100\%$ mortality) in our optimized infection condition, suggesting that the PA14 strain can cause disease progress in fly model system. We found that flies carrying a constitutively activated mutant form of the Toll receptor $(Tl^{10b})$ showed increased resistance to P. aeruginosa infection and that flies carrying mutations in the Toll signaling pathway as well as in the Imd signaling pathway was more susceptible to PA14 infection. All these results imply that the Toll pathway might be important in the resistance to this pathogenic Gram-negative bacterial infection.

  • PDF

GENERALIZED $BARTOSZY\'{N}SKI'S$ VIRUS MODEL

  • Kim, Yong-Dai
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.4
    • /
    • pp.397-407
    • /
    • 2006
  • A new stochastic process is introduced for describing a mechanism of viruses. The process generalizes the $Bartoszy\'{n}ski's$ process ($Bartoszy\'{n}ski$, 1975a, 1975b, 1976) by allowing the stochastic perturbation between consecutive jumps to take into account the persistent infection (the infection without breaking infected cells). It is shown that the new process can be obtained by a weak limit of a sequence of Markov branching processes. Along with the construction of the new process, we study how the stochastic perturbation influences the risk of a symptom in an infected host. For this purpose, the quantal response model and the threshold model are investigated and compared through their induced survival functions.

Establishment of inflammatory model induced by Pseudorabies virus infection in mice

  • Ren, Chun-Zhi;Hu, Wen-Yue;Zhang, Jin-Wu;Wei, Ying-Yi;Yu, Mei-Ling;Hu, Ting-Jun
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.20.1-20.13
    • /
    • 2021
  • Background: Pseudorabies virus (PRV) infection leads to high mortality in swine. Despite extensive efforts, effective treatments against PRV infection are limited. Furthermore, the inflammatory response induced by PRV strain GXLB-2013 is unclear. Objectives: Our study aimed to investigate the inflammatory response induced by PRV strain GXLB-2013, establish an inflammation model to elucidate the pathogenesis of PRV infection further, and develop effective drugs against PRV infection. Methods: Kunming mice were infected intramuscularly with medium, LPS, and different doses of PRV-GXLB-2013. Viral spread and histopathological damage to brain, spleen, and lung were determined at 7 days post-infection (dpi). Immune organ indices, levels of reactive oxygen species (ROS), nitric oxide (NO), and inflammatory cytokines, as well as levels of activity of COX-2 and iNOS were determined at 4, 7, and 14 dpi. Results: At 105-106 TCID50 PRV produced obviously neurological symptoms and 100% mortality in mice. Viral antigens were detectable in kidney, heart, lung, liver, spleen, and brain. In addition, inflammatory injuries were apparent in brain, spleen, and lung of PRV-infected mice. Moreover, PRV induced increases in immune organ indices, ROS and NO levels, activity of COX-2 and iNOS, and the content of key pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, interferon-γ and MCP-1. Among the tested doses, 102 TCID50 of PRV produced a significant inflammatory mediator increase. Conclusions: An inflammatory model induced by PRV infection was established in mice, and 102 TCID50 PRV was considered as the best concentration for the establishment of the model.

Effect of respiratory syncytial virus infection on regulated on activation, normal T-cells expressed and secreted production in a murine model of asthma

  • Ju, Yanghua;Choi, Seung-Jun;Lee, Hui-Su;Kim, Hyun-Sook;Won, Sul-Mui;Chun, Yoon-Hong;Yoon, Jong-Seo;Kim, Hyun-Hee;Lee, Joon-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.11
    • /
    • pp.456-462
    • /
    • 2011
  • Purpose: Synthesis of regulated on activation, normal T-cells expressed and secreted (RANTES) in the airway has previously been shown to be elevated after respiratory syncytial virus (RSV) infection. However, since few studies have examined whether RSV-infected asthma patients express a higher level of RANTES than do normal individuals, we used a murine model of asthma to address this question. Methods: We prepared Dermatophagoides farinae-sensitized mice as an asthma model, and then infected them with RSV and analyzed the changes in airway responsiveness and the cell populations and cytokine levels of bronchoalveolar lavage fluid. Results: RANTES synthesis increased in response to RSV infection in both control mice and in asthma model (D. farinae) mice. However, there was no significant difference in the amount of RANTES produced following RSV infection between control and D. farinae mice. RSV infection affected neither interferon-${\gamma}$ synthesis nor airway responsiveness in either control or D. farinae mice. Conclusion: RSV infection did not induce more RANTES in a murine model of asthma than in control mice.

Use of an Artificial Neural Network to Construct a Model of Predicting Deep Fungal Infection in Lung Cancer Patients

  • Chen, Jian;Chen, Jie;Ding, Hong-Yan;Pan, Qin-Shi;Hong, Wan-Dong;Xu, Gang;Yu, Fang-You;Wang, Yu-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5095-5099
    • /
    • 2015
  • Background: The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. Materials and Methods: A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. Results: The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05%(200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (${\geq}65$ years), use of antibiotics, low serum albumin concentrations (${\leq}37.18g/L$), radiotherapy, surgery, low hemoglobin hyperlipidemia (${\leq}93.67g/L$), long time of hospitalization (${\geq}14$days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model($0.829{\pm}0.019$)was higher than that of LR model ($0.756{\pm}0.021$). Conclusions: The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

Validation of an Anthracnose Forecaster to Schedule Fungicide Spraying for Pepper

  • Ahn, Mun-Il;Kang, Wee-Soo;Park, Eun-Woo;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • With the goal of achieving better integrated pest management for hot pepper, a disease-forecasting system was compared to a conventional disease-control method. Experimental field plots were established at Asan, Chungnam, in 2005 to 2006, and hourly temperature and leaf wetness were measured and used as model inputs. One treatment group received applications of a protective fungicide, dithianon, every 7 days, whereas another received a curative fungicide, dimethomorph, when the model-determined infection risk (IR) exceeded a value of 3. In the unsprayed plot, fruits showed 18.9% (2005) and 14.0% (2006) anthracnose infection. Fruits sprayed with dithianon at 7-day intervals had 4.7% (2005) and 15.4% (2006) infection. The receiving model-advised sprays of dimethomorph had 9.4% (2005) and 10.9% (2006) anthracnose infection. Differences in the anthracnose levels between the conventional and model-advised treatments were not statistically significant. The efficacy of 10 (2005) and 8 (2006) applications of calendar-based sprays was same as that of three (2005 and 2006) sprays based on the disease-forecast system. In addition, we found much higher the IRs with the leaf wetness sensor from the field plots comparing without leaf wetness sensor from the weather station at Asan within 10km away. Since the wetness-periods were critical to forecast anthracnose in the model, the measurement of wetness-period in commercial fields must be refined to improve the anthracnose-forecast model.

A Study on the Demage forecast of Biological Terrorism ­Focused on Smallpox­ (시뮬레이션을 이용한 생물테러 발생에 따른 피해예측에 관한 연구 ­천연두를 중심으로­)

  • 김영훈;박정화;김태현;문성암
    • Journal of the military operations research society of Korea
    • /
    • v.29 no.2
    • /
    • pp.26-44
    • /
    • 2003
  • This study Is to forecast the damage of smallpox as a biological weapon and to measure the effect of potential responses (quarantine, vaccination and cure) to the spread of smallpox infection when a smallpox bioterrorism attack occurs. We designed the smallpox spreading simulation model through the literature study on a basis of some existing infectious disease models such as SIR, SEIR model by using Vensim program. In order to evaluate the performance of responses to smallpox, we measure the total infection population, infection sustaining duration, average infection rate and the infection spreading behavior of the smallpox. This study can help those who are related to the bioterrorism forecast the present and possible demage, and take more effective actions for minimizing the damage by smallpox bioterrorism.

STABILITY PROPERTIES OF A DELAYED VIRAL INFECTION MODEL WITH LYTIC IMMUNE RESPONSE

  • Song, Fang;Wang, Xia;Song, Xinyu
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1117-1127
    • /
    • 2011
  • In this paper, a class of more general delayed viral infection model with lytic immune response is proposed by Song et al.[1] ([Journal of Mathematical Analysis Application 373 (2011), 345-355). We derive the basic reproduction numbers $R_0$ and $R_0^*$ 0 for the viral infection, and establish that the global dynamics are completely determined by the values of $R_0$ and $R_0^*$. If $R_0{\leq}1$, the viral-free equilibrium $E_0$ is globally asymptotically stable; if $R_0^*{\leq}1$ < $R_0$, the immune-free equilibrium $E_1$ is globally asymptotically stable; if $R_0^*$ > 1, the chronic-infection equilibrium $E_2$ is globally asymptotically stable by using the method of Lyapunov function.

The influence of infection ratio on Gradual Reduction of Drug Dose for the treatment of AIDS patients (AIDS환자 치료를 위한 점진적 약물감소기법에 감염속도상수가 미치는 영향)

  • Lee, Kang-Hyun;Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.174-182
    • /
    • 2007
  • In this paper, we study the influence of infection ratio on gradual reduction of drug dose for the five state HIV infection model that explicitly includes the population of the virus. We first compute all equilibrium points of the model and investigate the stabilities of them. As a result, a bifurcation diagram is obtained which shows a change in the equilibrium points, or in their stability properties, as the drug effect $\eta$ is varied from 0 to 1(alternatively, drug dose is changed from 1 to 0). Based on the bifurcation diagram, we show that the gradual reduction of drug dose can be applied for the treatment of AIDS patients. Moreover, we analyze the influence of the variation of infection ratio on the gradual reduction treatment. Computer simulation results are also presented to validate the proposed results.

EXISTENCE AND UNIQUENESS OF ENDEMIC STATES FOR AN EPIDEMIC MODEL WITH EXTERNAL FORCE OF INFECTION

  • Cha, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.175-187
    • /
    • 2002
  • The existence and uniqueness of steady states for the age structured S-I-R epidemic model is considered. Intercohort form with external force is considered for the force of infection. Existence is obtained for nonvanishing external force of infection. Uniqueness is shown for the case where there is no vertical transmission of the disease.