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GENERALIZED BARTOSZYNSKI’S VIRUS MODEL!

YongDpAl Kim!

ABSTRACT

A new stochastic process is introduced for describing a mechanism of
viruses. The process generalizes the Bartoszyriski's process {Bartoszyniski,
1975a, 1975b, 1976) by allowing the stochastic perturbation between con-
secutive jumps to take into account the persistent infection (the infection
without breaking infected cells). It is shown that the new process can be ob-
tained by a weak limit of a sequence of Markov branching processes. Along
with the construction of the new process, we study how the stochastic per-
turbation influences the risk of a symptom in an infected host. For this
purpose, the quantal response model and the threshold model are investi-
gated and compared through their induced survival functions.
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1. INTRODUCTION

Bartoszyniski (1975a, 1975b, 1976) presented the following mode] describing
the growth of rabies virus in a human host after infection by a rabid animal. Let
X (t) be the amount of virus at time ¢ with X(0) = z.

(i) X (t) increases by jumps at times 71,75, .. . by amounts Y7, Y3, . .. which are
ud with d.f. H.

(ii) Let N(t) be the number of jumps until the time ¢. Then

X(t) = ze %, if N(t) =0,
| et D Ve ), i NG > 0.
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(iii) Pr(jump in(¢,t + k) | X(¢)) = ahX(t) + o(h) .

The biological background of the process is as follows. Once viruses enter
a susceptible host, they enter a cell and produce within it a certain number of
copies of itself, eventually causing the cell to break and spill its contents. At
the same time, the presence of the virus in the organism causes the production
of antibodies, which in turn destroy the viruses. In the model, X (0) = z is the
initial amount of the virus in the organism and the exponential decrease between
jumps corresponds the destruction of the viruses by the antibodies. Each jump
corresponds to the cell breaking due to the copies of viruses inside it and the
size of jump represents the number of copies of viruses coming from the broken
cell. That the intensity of jump is proportional to the amount of the virus can
be interpreted as “the more the viruses, the more cells invaded, and consequently
broken.”

Although Bartoszynski introduced the above model specifically for rabies
virus, its formulations appear general enough for the description of any virus
within any organism (Trajstman and Tweedie, 1982). However, in the B-process
(Bartoszyriski’s process), viruses are able to give birth to their offsprings only
by destroying infected cells. The inevitable destruction of the host cell is not
the only outcome of viral infection. Many viruses enter into a host-parasite re-
lationship that allows them to be carried and released for long periods without
lysis (Ross, 1986). In this paper, a new process called a generalized B-process is
introduced to take into account the slow releasing of offsprings (called the persis-
tent infection) by adding a stochastic perturbation to the deterministic decrease
between two consecutive jumps in the B-process, which results from the combi-
nation of the gradual death of viruses by antibodies and the slow birth of viruses
by the persistent infection. The relation between the stochastic perturbation
and the persistent infection can be best described by showing that the general-
ized B-process can be obtained by a weak limit of a sequence of certain Markov
branching processes which model the persistent infection in a natural way. See
Section 3 for details.

Along with the process itself, we study a mechanism of how viruses cause a
symptom to an infected host. A symptom might be the death of the host for
rabies virus, some physical responses such asthma-like symptom for influenza
virus, or the proliferation of infected cells resulting in tumors. Generally, there
are two mechanisms widely used in practice: the threshold model and the quan-
tal response model. The threshold model assumes the existence of a threshold
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and a symptom occurs as soon as the amount of the virus becomes greater than
the threshold. The quantal response model assumes that the occurrence of the
symptom is stochastically related to the amount of the virus. The idea of the
quantal response model was originally introduced by LeCam replacing the thresh-
old model and subsequently by Puri (1967) and Puri and Senturia (1972). While
the threshold model is easy to understand and implement, there are several rea-
sons that the quantal response model can replace the threshold model. First, the
hypothesis of existence of a fixed threshold may not be strictly correct. Second, it
is not clear what value one ought to choose for the threshold in a given situation,
and third, the threshold hypothesis makes the algebra unnecessarily intractable
due to the involvement of the first passage time problem. Kim (1998) compared
the two mechanisms in the B-process by looking at the induced distributions of
the survival time: the time elapsing between the first infection and the occurrence
of a symptom on the host. In the present paper, we do the same comparison of
the two mechanisms with the generalized B-process. Our main interests are on
the influence of the stochastic perturbation on the risk of the symptom. One
surprising result found in this paper is that the stochastic perturbation affect the
risks of symptoms of the two model (the quantal response model and the thresh-
old model) qualitatively differently. While the stochastic perturbation increases
the risk in the quantal response model, the risk is reduced in the threshold model.

This paper is organized as follows. In Section 2, the generalized B-process is
defined. In Section 3, it is shown that the generalized B-process can be obtained
as a weak limit of a sequence of Markov branching processes. In Section 4, the
two mechanisms of symptom - the quantal response model and the threshold
model are studied with the generalized B-process. All proofs are in Appendix A
at the end of the paper.

2. THE MODEL

Before presenting a formal definition of the generalized B-process, we give
some informal discussion about how to construct the process. By the definition
of the B-process X (t), we have

X(t) = X(0)e™

provided no jump until time ¢, which is equivalent to that between the lysis of
infected cells, the process X (t) satisfies a differential equation

dX(t) = —cX (t)dt. (2.1)
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To give stochastic perturbation, we can use a stochastic differential equation
instead of (2.1). That is, (2.1) is replaced by

dX (t) = —cX (t) + (X (£))dW (t), (2.2)

where W is a Wiener process. Suitable choice of o2(z) would be o%(z) = 0%z

for some nonnegative constant o2 since it will make the process have a branching
property. To sum up all the arguments, we can construct the generalized B-
process as follows.

(1) X(¢) has jumps at the times 77,75 ... with amount Y3, Y5,.. ..

(ii) For t € [Tn, Tnt1), X(t) satisfies a stochastic differential equation

dX(t) = —cX(t) + o2 X (t)dW (t). (2.3)

(iii) Pr(jump in(¢,t + h) | X(t)) = ahX(t) + o(h).

The above construction, even if it gives a clear view of how the process be-
haves, needs clarification of many mathematical details. First of all, the stochas-
tic differential equation (2.3) should be defined in a consistent way since it is
defined on the intervals between jumps which are random. Also the description
of jump mechanism (iii) need more explanation since X (¢) is stochastic rather
than deterministic. Furthermore, even after the above points are clarified, it is
not immediately clear that such a process exists.

To avoid all the difficulties, we turn our attention to a (infinitesimal) generator
of Markov process. It is well known that the solution of the stochastic differential
equation (2.3) has a generator A on C2(R™)- twice continuously differentiable
function with compact support- of the form

01(x) 1, 0f(x)
Oz 2 Ox?
On the other hand, if ¢ = 0 and 02 = 0 (i.e. no death of the virus), then the
generator becomes

Af(z) = —cx

(2.4)

Af(z) = az /0 “lfa+v) - f@)dH @) (2.5)

for a bounded function f. Combining (2.4) and (2.5), now we define the general-
ized B-process as follows.
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DEFINITION 2.1. The generalized B-process is a nonnegative valued Markov
process with the origin as an absorbing state such that the generator is
of(x) 1, 8 f(x)

Af(z) = —eT— + 50 T 52

+az [ Tty - f@)dHE)  (26)
0

and the domain of A contains CZ2(R").

THEOREM 2.1. The generalized B-process is well defined on [0,00). That

is there ezists a unique nonexplosive process whose generator is (2.6) provided
o
Jo zdH(z) < oo.

3. THE APPROXIMATION

To see how the process includes the idea of the persistent infection, consider
a Markov branching process such that the branching rate is A and the family size
distribution is given by

pol(Z = 0) + p2I(Z = 2) + (1 — po — p2)h(2),

where Z is a number of offsprings and 4 is a certain probability mass function
concentrated on the nonnegative integers greater than 2. Here pg is the proba-
bility of a virus being killed by antibodies and p» is the probability of a virus
being born by the persistent infection and h(z) is a probability mass function
of the number of offsprings from the lysis infection. If ps = 0, then the process
corresponds to the B-process. Actually Biihler and Keller (1985) showed that
the B-process is obtained by a limit of such Markov branching processes. The
main result of this section is to show that in case when py > 0, the limit of such
Markov processes is the generalized B-process.

Now, we define a Markov branching process Z,(t) with Z(0) = nz such that
the branching rate is A, and the family size distribution is given by pf = dn/An,
Py = A {bn + ra(H(1/n) — H(0))} and p} = mn/M(H(k/n) — H((k — 1)/n))
for k > 2 where d,, = 02/2 + (c+ a)/2n, b, = 02 — (c + a)/2n, r, = a/n? and
An = DPn + gn + . Let Xy (t) = Zp(nt)/n.

THEOREM 3.1. The sequence of processes {Xn(t)} converges to the general-
ized B-process in the sense of convergence of the finite dimensional distribution.
If E(Z) < oo, then the convergence also holds in DI[0,00) with the Skorohod
topology.
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4. MECHANISMS OF SYMPTOM

To define the quantal response model, we introduce a new stochastic process
Z(t) such that

2 = 1, if the symptom occurred before time ¢,
N 0, otherwise.

The quantal response model can be described by
Pr{Z(t+ h) =1|Z(t) =0, X(t) =0} = AhX(¢) + o(h).

Let S(t : z) be a survival function of an infected host with z being initial amount
of viruses. Then it is easy to see that

S(t:z) = B {exp <—>\ /0 t X(s)ds) } .

Since the process is a branching process, we get
S(t: z) = exp(—2¥(t)) (4.1)

for some nonnegative nondecreasing function ¥. The next theorem gives a dif-
ferential equation for ¥(t).

THEOREM 4.1. VU(t) is a solution of a differential equation

dv(t) +c¥(t) +

o?W(t)? _
dt —5 @+ A) +ag(¥(t)) =0 (4.2)

with an initial condition ¥(0) = 0 where
o0
#s) = [ e ).
0

From Theorem 4.1, we see that U(t) satisfies

W(t) du
£— / . (4.3)
o a+A—cu—o%u2/2—ap(u)

Let L(u) = a+A—cu—o0?u?/2—a¢(u). Then since L(0) = A > 0 and dL(u)/du <
0, there exists a unique positive root w of L(u) = 0, and hence ¥(t) — w as
t — oo and so S(oo : z) = exp(—wz), which shows that the survival function
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does not vanish eventually. Biologically, an infected host has positive chance of
not developing any symptom at all.
In (4.3), we can see that as o2 increases, the denominator of the integrand
decreases and so for fixed t, W(t) decreases. This observation means that the
stochastic perturbation reduces the risk of the symptom in the quantal response
model. Now, we wonder whether this surprising result can be applied to any
other mechanisms. To see this, let us consider the threshold model, in which the
symptom occurs as soon as the amount of the virus becomes larger than a given
threshold. Even though no analytical result is available, the simulation result
in Figure 4.1 shows that the risk of the symptom increases as o2 increases. So
the conclusion is that an underlying mechanism of the symptom plays a crucial
role for characterizing the qualitative nature of the risk of symptoms as well as
quantitative properties. This contradicts the usual belief that a mechanism of
symptoms only affects the survival function quantitatively. As mentioned in In-
troduction, the threshold model is popularly used for its conceptual simplicity
and our results shows that this kind of conveniences may result in wrong conclu-
sion. To sum up, choosing a mechanism should be done with great care.
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FIGURE 4.1 Survival functions of the threshold model of the B-process with diffusion with various
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APPENDIX

In this appendix, we present the proofs of the theorems in the paper.
First, we present a theorem, which plays a key role for the remains. The proof
is in Lamperti (1967).

THEOREM A.l. (Random time change)

(i) Let X(t) be a branching process. Define a random variable T and a stochas-
tic process J by T = sup{t : X(t) > 0} and J(t) = [J X (u)du. Let I(t) be
the inverse process of J(t) for t < T. Then the process Y(t) defined by
Y() = X(I(t)) fort < T and Y(t) = 0 otherwise is a Lévy process with
nonnegative jumps. '

(ii) Conversely, let Y (t) be a Lévy process with nonnegative jumps which has
been stopped when (if) it reached 0 (Y (0) > 0). Assume that [;° 1/Y (u)du =
oo with probability 1. Define a process I(t) by I(t) = fg 1/Y(u)du and
let J(t) be an inverse process of I(t). Then a process X(t) defined by
X(t) =Y (J(t)) is a branching process.

Proof of Theorem 2.1

Let W(t) be a Wiener process with variance ot and let N(t) be a Poisson
process with intensity a. Now we define a Lévy process Y (¢) by

N()
Y(t)=—ct+ W)+ Y Yi+z
i=1
where Y;’s are 1iid random variables with a distribution function H. Then it is
easy to see that the generator B of the process Y is

af(x) 1
x| + 5

8 f(z
Bi(z) = AL va [T 144 - f@aH ).

Let X (t) be a branching process obtained by the random time change of the
Lévy process Y (t). Then by Theorem 10.12 in Dynkin (1965), the generator of
the process X (t) is (2.6). When E(Y;) < oo, then the law of large number implies
that
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NEO)
hLS ; N B

with probability one. So the process Y (¢) is nonexplosive and so is X(t).
The uniqueness holds trivially since the generator B generates a unique Markov
process. 0

Proof of Theorem 3.1

Since X, (t) is a branching process, the Lévy process Y,(t) obtained by the
random time change has a Laplace transform (Lamperti, 1967; Silverstein, 1968)
as

E[exp (—u(Yn(t) — Yn(O)))] = exp [n2)\nt(pge“/"+p?e—“/"+2pz6_ku/" - 1)]
k=2

Expanding exp(z) = 1 + z + 22/2 + o(x), we have

E [exp (~u(Ya(t) — Ya(0)))] = exp [tnAn(p} — p5)u+ _Mn@a‘;pa)u?
i, Y ((5) - () + o)

k=1
2,2

oC
—  exp [cut + to + at(/o e "WdH (y) — 1)},

where the last term is the Laplace transform of the Lévy process obtained by
the random time change of the generalized B-process. By the continuity of the
random time change (Helland, 1978), the proof is done. a

Proof of Theorem 4.1
Let Ft = o(X(u),u < t) and Y; = exp(—A fg X(u)du). Further, let

E*(Y}) = E(131X(0) = 2).

Since S(t : z) = E*(Y;), we have
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(%) [E*(S(t: X (h))) - S(t: 2)]

B [EX)(v;) - B*(Y))]
B (1 (exp( [ X+ Wiz — B (oxp(h [ Xuaw )]
[

E* [V exp(\ / (w)du) - Y]

B (Y — Vi) + (,i)E [Yiun (exp(2 /O " X (u)du) 1]

— =S8(t:2)+ AzS(t: 2) (A.1)
because
1 h
(E)Y'Hh(exp()\ /0 X (u)du) — 1) Yz
pointwise boundedly. However, the generator (2.6) of the process implies that
1
(E)Ez [S(t: X(R)) — S(t: 2)]

BS(t z) 1 5 0%8(t:2)
0z —1—202 022

+az / S(t:z+y)— S(t: 2)dH(y). (A.2)
0

Combining (A.1) and (A.2), we have

2
25 1, 26St 2) 4 / S(t: 2 +y) ~ S(t: 2)dH(y)
0z 2
_ 952 s a), (A.3)
ot
Substituting (4.1) into (A.3), we obtain (4.2). O
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