• 제목/요약/키워드: inertial technique

검색결과 137건 처리시간 0.028초

영상기법을 이용한 수직상향 기포유동에 관한 연구 (A Study on the Vertical upward Bubble Flow using Image Processing Technique)

  • 서동표;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.617-623
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. The velocity of upward bubble flow was calculated for two different experimental conditions:1) bubble flow without kinetic energy 2) bubble flow with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of buoyancy l0cm away from the nozzle. Whereas. kinetic energy is dominant before 30 cm away from the nozzle in bubble flow but after this point kinetic energy and inertial force are applied on bubble flow at the same time In addition, as the flow rate increases the maximum velocity point moves to the nozzle. The velocity Profiles near free surface is extremely irregular due to surface flow. Gas volume fraction is high near the nozzle due to gas concentration. but decreases with the increasement of axial position. Gas volume fraction does not vary after the axial position, z=60 in spite of the increasement of flow.

원심모형 실험기의 실시간 무선데이터 측정시스템 구축 (Development of real-time wireless data measurement technique on Centrifugal experiment)

  • 이종필;김유석;박진우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1289-1293
    • /
    • 2010
  • A slipring or FORJ are usually adopted in order for power supply of Geo-centrifuge and input/output data acquisition. Since using slipring causes quite a lot electrical noise, an optical communication using FORJ becomes more general for data acquisition. Such data acquisition devices, however, require frequent maintenance and replacement due to deterioration by long term usage. DICT has set up a real-time wireless date acquisition system using wireless communication technology instead of FORJ. The system enables a remote measurement at any inertial acceleration field up to 100g level and provides as same performance as FORJ. The priority of this system is to use a normal modem substituting a special FORJ.

  • PDF

자이로 랜덤 프로세스의 분석 (An analysis of the gyro random process)

  • 고영웅;김경주;이재철;권태무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.210-212
    • /
    • 1996
  • Random drift rate (i.e., random drift in angle rate) of a gyro represents the major error source of inertial navigation systems that are required to operate over long time intervals. It is uncorrectable and leads to an increase in the error with the passage of time. In this paper a technique is presented for analyzing random process from experimental data and the results are presented. The problem of estimating the a priori statistics of a random process is considered using time averages of experimental data. Time averages are calculated and used in the optimal data-processing techniques to determine the statistics of the random process. Therefore the contribution each component to the gyro drift process can be quantitatively measured by its statistics. The above techniques will be applied to actual gyro drift rate data with satisfactory results.

  • PDF

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.

최적 슬라이딩모드 제어에 의한 영구자석 등기전동기의 위치제어 (The Position Control of PMSM using Optimal Sliding-mode Control)

  • 윤병도;김윤호;정재륜;이병송;김수열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.145-147
    • /
    • 1993
  • This paper described an optimal control technique for position control of an inverter-fed PMSM drive. A control system of PM machine for position, speed and current control based on optimal sliding mode control system is discussed. This is an effective means to keep a system insensitive to parameter variation, disturbance and chattering reduction. The main purpose of the control is to improve the dynamic response of the PMSM with the load of the inertial plant. The optimal sliding mode control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system, Simulation results are given and discussed.

  • PDF

Design of In-Motion Alignment System of SDINS using Robust EKF

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.177.3-177
    • /
    • 2001
  • In this paper, the design of the in-motion alignment system of Strapdown Inertial Navigation System(SDINS) using Robust Extended Kalman Filter(REKF) is presented. The compensation of errors in the aided navigation system is accomplished by the indirect feedback filtering. The performance of the aided navigation algorithm is very sensitive to the accuracy of the initial estimate, which is the characteristic of the EKF. Unfortunately, the initial attitude error can be very large during the in-motion alignment. To overcome the in-motion alignment under large initial attitude error problem, the REKF using linear robust filtering technique is proposed. The linear robust H$_2$ filter can be adopted for nonlinear ...

  • PDF

Development of Korean Dummies Based on Anthropometric Data

  • Lee, Sang-Cheol;Son, Kwon;Kim, Seong-Jin;Jeong, Yun-Seok;Choi, Kyung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.181.1-181
    • /
    • 2001
  • Human dummies are essential tools in the development of such sensible products as vehicles. Dummies are actively used not only in reach and view field tests, major ergonomic evaluations, but also in impact tests and perception evaluations. This study attempts to obtain possible correlations of human body segments from Korean anthropometric data. The investigation is focused on the description of human and dummy geometric and inertial properties. The modeling approach suggested is based on rigid body dynamics using fifteen individual body segments connected by joints. The segments are joined at locations representing the physical joints of the human body and have the mass of the body between body joints. For visualization, a three-dimension graphic technique is used ...

  • PDF

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

1-축 자이로센서를 이용한 진북 추종 알고리즘 특성에 관한 연구 (Study on the Algorithm Characteristic of True North-Finding Utilizing 1-axis Gyro Sensor Equipment)

  • 최주호;권영;이대철;정한식;정효민
    • 동력기계공학회지
    • /
    • 제19권3호
    • /
    • pp.36-41
    • /
    • 2015
  • The true north-finding equipment utilizing gyro sensor is used for INS(Inertial Navigation System) and has an increasing preference for gyro compass system due to compact size, lightening, low power and price. The purpose of this experiment is to research gyro compass system providing high performance in the field of manned or unmanned gyro compass system which proposes the accuracy of 1% utilizing experimented equipment at true north of the earth. Unlike the conventional system, the proposed gyro sensor system indicates to be applied in the various and specific equipment using multiple technique and method.