• Title/Summary/Keyword: inertia force

Search Result 413, Processing Time 0.027 seconds

High-Velocity Deformation Analysis Using the Rigid-Plastic Finite Elemement Method Considering Inertia Effect (관성효과가 고려된 강소성 유한요소법을 이용한 고속변형해석)

  • Yoo, Yo-Han;Park, Khun;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1562-1572
    • /
    • 1996
  • The rigid-plastic finite element formulation including the inertia force is derived and then the rigid-plastic finite elemnt program considering the inertia effect is developed. In order to consider the strain hardening, strain rate hardening and thermal softening effects which are frequentrly observed in high-velocity deformation phenomena, the Johnson-Cook constitutive odel is applied. The developed program is used to simulate two high-velocity deformation problemss ; rod impact test and hdigh-velocity compression precess. As a result of rod impact test simulation, it is found that the siulated result has a good agreement with the experimental observation. Through the high-velocity compression process simulation. it is also found that the accuracy of the simulated results is dependent upon the time increment size and mesh size.

Force Distribution Algorithms For Singularity-Free 3-DOF Parallel Haptic Device With Redundant Actuation

  • Kim, Tae-Ju;Chung, Goo-Bong;Yi, Byung-Ju;Seo, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1598-1602
    • /
    • 2003
  • The parallel-type mechanism provides more accurate and stiff motion than the serial-type mechanism. However, in case of using the haptic device, the performance of the force reflection can be deteriorated due to the singular points existing in workspace. In this paper, we propose a redundantly actuated parallel 3-DOF haptic device, which is singularity-free in the workspace and has an improved force reflection capability. In addition, we propose a new force distribution algorithm, which can reflect force of both high and low resolution, using two sets of actuator with different size. Redundant actuators are attached to the base frame in order to minimize the inertia of the system. Moreover, a wire and gear reduction system is employed to achieve high force reflection along with soft feeling. We confirm the performance of the force reflection capability throughout simulation.

  • PDF

Control and Evaluation of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6자유도 역감제시 장치의 제어 및 평가)

  • Yun, Jeong-Won;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.160-167
    • /
    • 2001
  • This paper presents control and evaluation of a new haptic device with a 6-DOF parallel mechanism for interfacing with virtual reality. This haptic device has low inertial, high bandwidth compactness, and high output force capability mainly due to of base-fixed motors. It has also wider orientation workspace mainly due to a RRR type spherical joint. A control method is presented with gravity compensation and with force feedback by an F/T sensor to compensate for the effects of unmodeled dynamics such as friction and inertia. Also, dynamic performance has been evaluated by experiments. for force characteristics such as maximum applicable force, static-friction force, minimum controllable force, and force bandwidth Virtual wall simulation with the developed haptic device has been demonstrated.

  • PDF

Embodiment of Virtual Magnet Using a 6 DOF Force-Reflecting Haptic Inteface by Ultrasonic Motors (초음파 모터 구동 6자유도 역감 장치를 이용한 가상 자석의 구현)

  • 강원찬
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.729-734
    • /
    • 2000
  • This paper proposes virtual-magnetic system by a force-reflecting interface to drive a ultrasonic motors(USMs) To approach virtual magnet in graphic the 6 dDOF force-reflecting interfaces provides force feedback to users as if I is magnetic-force, So users can feel real magnet Effectively to display the magnetic-force we need the interface with specific characteristics such as low inertia almost zero friction and very high stiffness As an actuator for the interface the USMs have many good advantage satisfied these conditions over conventional servo motors. To estimate capability of this virtual-magnetic system we did an experiment of magnetism based on coulomb's law when Coulmb's low apply this experiment it is vey conformable to real magnet

  • PDF

An experimental study on friction measurement of piston-ring assembly of a SI engine (가솔린 기관의 피스톤-링 결합체 마찰력 측정에 관한 실험적 연구)

  • 이동원;윤정의;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.66-74
    • /
    • 1990
  • Friction between piston-ring assembly and cylinder wall of a spark ignition engine was evaluated under various engine operating conditions utilizing a grasshopper linkage system. The friction force was estimated by the force balance relation at the small end of connecting rod. Three forces were chosen to be measured for the objective. They were gas pressure inside the cylinder, inertia force of the piston-ring assembly, and the force exerted by the connecting rod. These forces were measured by a piezo type pressure sensor, an accelerometer and strain gauges, respectively. Comparisons were made with the frictional force evaluated by the conventional method where the assumption of constant rotational speed of engines was adopted. Due to the variation of rotational speed of engines, the conventional method was found to lead to a large error in the evaluation of the frictional force.

  • PDF

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.

Dynamic Stability of Vertical Columns Subjected to a Subtangential Froce (아접선력을 받는 수직 기둥의 동적 안정성)

  • 박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.313-318
    • /
    • 1996
  • This paper deals with the dynamic behavior of elastic columns under the action of subtangential forces. The above subtangential force can be-realized by the combination force between the dead load of thetip mass and the pure follower thrust. The tip mass is assumed to be a rigid body not a mass point as it has been assumed so for. The equations of motion are formulated based on extended Hamilton's principle and the finite element method. It is shown that nonconservativeness of the applied force has greatly effect on the instability type. It is found that the critical subtangential force can also be changed by consideration of the tip mass parameters taking into account of its magnitude, rotary inertia and size. The influence of the self-weight of the column on the change of the critical force is also investigated.

  • PDF

Analysis of three dimensional equivalent static wind loads of symmetric high-rise buildings based on wind tunnel tests

  • Liang, Shuguo;Zou, Lianghao;Wang, Dahai;Huang, Guoqing
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.565-583
    • /
    • 2014
  • Using synchronous surface pressures from the wind tunnel test, the three dimensional wind load models of high-rise buildings are established. Furthermore, the internal force responses of symmetric high-rise buildings in along-wind, across-wind and torsional directions are evaluated based on mode acceleration method, which expresses the restoring force as the summation of quasi-static force and inertia force components. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher modes can be considered, of symmetric high-rise buildings in along-wind, across-wind and torsional directions are deduced based on internal forces equivalence. Finally the equivalent static wind loads of an actual symmetric high-rise building are obtained by this method, and compared with the along-wind equivalent static wind loads obtained by China National Standard.

A Network Analysis of the Middle School Student's Conceptions about the Force and Motion (힘과 운동에 대한 중학생들의 개념조사)

  • Park, Soung-Shik;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.7 no.2
    • /
    • pp.61-70
    • /
    • 1987
  • This paper was made for the purpose of examining middle school student's conception about force and motion. Using questionaire method. this research was executed to 180 students at a middle school in Seoul. Questions were as following; 3 questions about relation of the direction of force and that of motion in case of throwing a ball up, 2 questions about parabolic motion. 1 question about inertia. and 1 question about action and reaction. The way of answering was both selecting and explaining the students' thought about questions. Network analysis was used for analyzing students' various responses. Through the analysis. some types of students' thought were revealed. As a result the representation of their response was motion implies force which had been discovered by earlier researchers. Even though students had learned about force and motion in the classroom. their ideas were unchanged or even reinforced wrongly in some case.

  • PDF

3D-inertia Valve Component for Centrifugal Force-based Micro Fluid Control (원심력기반 3차원 관성밸브 모델링을 통한 정밀 미세유체제어)

  • Kang, Dong Hee;Kim, Na Kyong;Kang, Hyun Wook
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • A three-dimensional slope valve component is used for controlling micro volume of liquid on a centrifugal force-based microfluidic disk platform, also called a lab-on-a-disk. The modeling factor of the slope valve component is determined to centrifugal force for liquid passing the crest of a slope valve via variation of slope length and angle as well as the radius to start point of slope valve. The centrifugal force is calculated by the equilibrium equation of the capillary and gravitational forces according to the microchannel surface roughness and the liquid volume, respectively. As a result, the slope valve is analyzed by the minimum angular velocity for liquid passing at crest point and the ratio between the length of micro liquid and slope length to obtain the factors for optimal slope angle modeling.