• 제목/요약/키워드: inert materials

검색결과 227건 처리시간 0.018초

Recent Progress in Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Kim, Hwan-Kyu;Oh, Jae-Buem;Baek, Nam-Seob;Roh, Soo-Gyun;Nah, Min-Kook;Kim, Yong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.201-214
    • /
    • 2005
  • We have designed and developed novel luminescent lanthanide complexes for advanced photonics applications. Lanthanide(III) ions (Ln$^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins and naphthalenes. The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to Ln$^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of Ln$^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent Ln$^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent Ln$^{3+}$ complexes, yielding novel Ln(III)-cored dendrimer complex. The novel Ln(III)-cored dendrimer complex has much higher PL intensity than the corresponding simple complex, due to the efficient site-isolation effect. In this article, we will deal with recent progress in the synthesis and photophysical studies of inert and stable luminescent Ln$^{3+}$ complexes for advanced photonics applications. Also, our review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to Ln$^{3+}$ ions with Ln(III)-chelated prototype complexes.

열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상 (Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells)

  • 김희섭;김지혜;신동협;안병태
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.

탄화온도 및 재담금 처리에 따른 중공형 탄소다공체의 기공구조 및 특성 (Pore Structure and Characteristics of Hollow Spherical Carbon Foam According to Carbonization Temperature and Re-immersion Treatment)

  • 이은주;이창우;김양도;임영목
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.24-30
    • /
    • 2013
  • Today, the modification of carbon foam for high performance remains a major issue in the environment and energy industries. One promising way to solve this problem is the optimization of the pore structure for desired properties as well as for efficient performance. In this study, using a sol-gel process followed by carbonization in an inert atmosphere, hollow spherical carbon foam was prepared using resorcinol and formaldehyde precursors catalyzed by 4-aminobenzoic acid; the effect of carbonization temperature and re-immersion treatment on the pore structure and characteristics of the hollow spherical carbon foam was investigated. As the carbonization temperature increased, the porosity and average pore diameter were found to decrease but the compression strength and electrical conductivity dramatically increased in the temperature range of this study ($700^{\circ}C$ to $850^{\circ}C$). The significant differences of X-ray diffraction patterns obtained from the carbon foams carbonized under different temperatures implied that the degree of crystallinity greatly affects the characteristics of the carbon form. Also, the number of re-impregnations of carbon form in the resorcinol-formaldehyde resin was varied from 1 to 10 times, followed by re-carbonization at $800^{\circ}C$ for 2 hours under argon gas flow. As the number of re-immersion treatments increased, the porosity decreased while the compression strength improved by about four times when re-impregnation was repeated 10 times. These results imply the possibility of customizing the characteristics of carbon foam by controlling the carbonization and re-immersion conditions.

가스 하이드레이트 형성 원리를 이용한 SF6 처리 기술에 관한 연구 (Effects of Surfactant on SF6 Gas Hydrate Formation Rate)

  • 이보람;이현주;김신호;이주동;김양도
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.73-76
    • /
    • 2008
  • [ $SF_6$ ] gas has been widely used as an insulating, cleaning and covering gas due to its outstanding insulating feature and because of its inert properties. However, the global warming potential of $SF_6$ gas is extremely high relative to typical global warming gases such as $CO_2$, CFCs, and $CH_4$. For these reasons, it is necessary to separate and collect waste $SF_6$ gas. In this study, the effects of a surfactant (Tween) on the formation rate of $SF_6$ gas hydrates were investigated. The $SF_6$ gas hydrate formation rate increased with the addition of Tween and showed a nearly 6.5 times faster hydrate formation rate with an addition of 0.2 wt.% Tween compared to an addition of pure water. This is believed to be due to the increased solubility of $SF_6$ gas with the addition of the surfactant. It was also found that $SF_6$ gas hydrate in the surfactant solution showed two-stage hydrate formation rates with a formation rate that increased rapidly in the 2nd stage.

m-Phenylene-Linked Bis-(Biradicals). Generation, Characterization and Computational Studies

  • Nicolaides, Athanassios;Tomioka, Hideo
    • Journal of Photoscience
    • /
    • 제10권1호
    • /
    • pp.165-173
    • /
    • 2003
  • m-Phenylene-linked biscarbenes, bisnitrenes and carbenonitrenes can be formed photochemically from appropriate nitrogenous precursors. Generation of such reactive intermediates under matrix-isolation conditions allows for their characterization by spectroscopic techniques such as ESR, UV /vis and IR. The latter method is also useful in characterizing secondary products derived from these reactive intermediates. Computational chemistry methods complement experimental IR data, aiding, thus, in identification of such compounds. In addition electronic structure calculations help in developing qualitative and semi-quantitative models, which can be useful in predicting ground-state multiplicities. The parent systems of m-phenylene-linked carbenes and nitrenes have high-spin ground states, but a switching to lower multiplicity can be achieved by chemical substitution. The ground state and various low-lying excited states of m-phenylenecarbenonitrenes can be reasonably approximated by simple valence-bond depictions. Finally, m-phenylenecarbenonitrenes are photoreactive in the inert matrix isomerizing to cyclopropene derivatives.

  • PDF

The Influence of Pressure, Temperature, and Addition of CO2 on the Explosion Risk of Propylene used in Industrial Processes

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.610-617
    • /
    • 2020
  • In process installations, chemicals operate at high temperature and high pressure. Propylene is used as a basic raw material for manufacturing synthetic materials in the petrochemical industry; However, it is a flammable substance and explosive in the gaseous state. Thus, caution is needed when handling propylene. To prevent explosions, an inert gas, carbon dioxide, was used and the changes in the extent of explosion due to changes in pressure and oxygen concentration at 25 ℃, 100 ℃, and 200 ℃ were measured. At constant temperature, the increase in explosive pressure and the rates of the explosive pressure were observed to rise as the pressure was augmented. Moreover, as the oxygen concentration decreased, the maximum explosive pressure decreased. At 25 ℃ and oxygen concentration of 21%, as the pressure increased from 1.0 barg to 2.5 bar, the gas deflagration index (Kg) increased significantly from 4.71 barg·m/s to 18.83 barg·m/s.

Ghost Fluid concept기반의 에너지 물질의 Multi Physics 연구 (Multi Physics research of Energy material using Ghost Fluid concept)

  • 김기홍;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.299-302
    • /
    • 2006
  • 본 연구에서는 화학적으로 활성화된 에너지 물질의 경계면을 정확하게 추적하는 기법을 소해한다. 이러한 경계면 추적기법은 Level Set기반의 Ghost Fluid Concept을 이용하여 폭발과 같은 화학적 현상을 포함하는 에너지 물질의 경계면을 정확하게 파악하고, 쉽게 multi material, phase등과 같은 현상으로 확장이 가능하다. 본 연구에서는 이러한 multi physics modeling을 위한 선행연구로써 basic sharp interface tracking, impact problem에 대해서 소개할 것이다.

  • PDF

석탄회를 이용한 환경친화적 인공골재 개발(I) (The Study on the ECO Artificial Aggregate using Coal-ash(I))

  • 조병완;김영진;안제상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.359-362
    • /
    • 2000
  • From a practical perspective, sustainable development requires the optimization of current natural resources and the minimization of derived wastes. A major concern with respect to sustainable infrastructure development is the continued depletion of easily-available natural resources and environmental matters are more serious, the concerned about waste materials which are inevitably produced in the manufacturing of the product is getting worse. These wastes must be handled and properly disposed, and many times, although this waste may be environmentally inert, it has been discarded in landfills. But current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns the breed negative public opinion. therefore, this study evaluates the ECO artificial aggregate and bricks were designed and tested for the end use of fly ash.

  • PDF

중질탄산칼슘을 혼합한 시멘트 경화체의 염소이온 확산특성 평가 (Evaluation on the Chloride Ion Diffusion of Cement Matrix Replaced with Ground Calcium Carbonate)

  • 정호섭;이승태;김종필;박광필;김성수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.553-556
    • /
    • 2006
  • Generally, concrete is one of the most widely used construction materials, because of its good durability to cost ratio. However, when subjected to severe environments its durability can significantly decline due to various harmful conditions. In this article, we would like to investigate a chloride ion diffusion of cement matrix with inert filler, which ground calcium carbonate(GCC). For the experimental results of the chloride ion diffusion, as the addition of GCC makes decreasing the permeability by micro-filler effect, the matrix of 5-15% ratio of replacement are superior to the GCC0 mortar matrix with respect to durability of cement matrix in this scope.

  • PDF

고Alumina질 다공성 세라믹스의 내열충격성 및 내Slag성 (기공크기에 따른) (Thermal Spalling and Resistance to Slag Attack in Porous High Alumina Ceramic (According to Pore Size))

  • 김병훈;나용한
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.747-753
    • /
    • 1993
  • The investigation was carried out to study the behaviors of the pore size and porosity, the mechanical strength, the resistance to thermal spallings and slag attacks according to particle sizes of starting raw materials in porous high Alumina ceramics. This porous ceramics have been used in processing of the clean steel by the blowing of the inert gas. The required properties in the practice are the suitable pores size, the sharp pores distribution for a uniform blowing of the gas, the strong corrosion resistance to slags and molten metals and the resistance to thermal spalling. The optimized properties in porous high alumina ceramics of the specimen No. 3 was found to be the very low slag intrusion and the superior resistance to thermal spalling because of the suitable pore size of 2.5${\mu}{\textrm}{m}$, the porosity of 30% and the high sinterability.

  • PDF