• Title/Summary/Keyword: inert materials

Search Result 227, Processing Time 0.03 seconds

Preparation and Electrochemical Characterization of Porous Carbon Foam from Waste Floral Foam for Supercapacitors (폐 플로랄 폼을 이용한 슈퍼커패시터용 다공성 탄소 폼 제조 및 전기화학 성능 평가)

  • Lee, Byoung-Min;Park, Jin-Ju;Park, Sang-Won;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.369-378
    • /
    • 2022
  • The recycling of solid waste materials to fabricate carbon-based electrode materials is of great interest for low-cost green supercapacitors. In this study, porous carbon foam (PCF) was prepared from waste floral foam (WFF) as an electrode material for supercapacitors. WFF was directly carbonized at various temperatures of 600, 800, and 1,000 ℃ under an inert atmosphere. The WFF-derived PCF (C-WFF) was found to have a specific surface area of 458.99 m2/g with multi-modal pore structures. The supercapacitive behavior of the prepared C-WFF was evaluated using a three-electrode system in a 6 M KOH aqueous electrolyte. As a result, the prepared C-WFF as an active material showed a high specific capacitance of 206 F/g at 1 A/g, a rate capability of 36.4 % at 20 A/g, a specific power density of 2,500 W/kg at an energy density of 2.68 Wh/kg, and a cycle stability of 99.96 % at 20 A/g after 10,000 cycles. These results indicate that the C-WFF prepared from WFF could be a promising candidate as an electrode material for high-performance green supercapacitors.

Electrodeposition of Permalloy-Silica Composite Coating (전기도금법을 이용한 퍼멀로이-실리카 복합도금)

  • Jung, Myung-Won;Kim, Jong-Hoon;Lee, Heung-Yeol;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2010
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and sonication time. Longer sonication period guaranteed better silica nanopowder dispersion and sonication period also influenced on composition of deposits. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In alkaline bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

Optimal Aluminizing Coating on Incoloy 909 (Incoloy 909 합금의 최적 알루미나이징 확산 코팅)

  • Kwon, S.W.;Yoon, J.H.;Joo, Y.K.;Cho, T.Y.;Ahn, J.S.;Park, B.K.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.175-179
    • /
    • 2007
  • An Fe-Ni-Co based superalloy Incoloy 909 (Incoloy 909) has been used for gas turbine engine component material. This alloy is susceptible to high temperature oxidation and corrosion because of the absence of corrosion resistant Cr. For the improvement of durability of the component of Incoloy 909 aluminizing-chromate coating by pack cementation process has been investigated at relatively low temperature of about $550^{\circ}C$ to protect the surface microstructure and properties of Incoloy 909 substrate. As a previous study to aluminizing-chromate coating by pack cementation of Incoloy 909, the optimal aluminizing process has been investigated. The size effects of source Al powder and inert filler $Al_O_3$ powder and activator selection have been studied. And the dependence of coating growth rate on aluminizing temperature and time has also been studied. The optimal aluminizing process for the coating growth rate is that the mixing ratio of source Al powder, activator $NH_4Cl$ and filler $Al_O_3$ are 80%, 1% and 19% respectively at aluminizing temperature $552^{\circ}C$ and time 20 hours.

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

Effect of the Holding Temperature and Vacuum Pressure for the Open Cell Mg Alloy Foams

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.309-315
    • /
    • 2012
  • Metal foam has many excellent properties, such as light weight, incombustibility, good thermal insulation, sound absorption, energy absorption, and environmental friendliness. It has two types of macrostructure, a closed-cell foam with sealed pores and an open-cell foam with open pores. The open-cell foam has a complex macrostructure consisting of an interconnected network. It can be exploited as a degradable biomaterial and a heat exchanger material. In this paper, open cell Mg alloy foams have been produced by infiltrating molten Mg alloy into porous pre-forms, where granules facilitate porous material. The granules have suitable strength and excellent thermal stability. They are also inexpensive and easily move out from open-cell foamed Mg-Al alloy materials. When the melt casting process used an inert gas, the molten magnesium igniting is resolved easily. The effects of the preheating temperature of the filler particle mould, negative pressure, and granule size on the fluidity of the open cell Mg alloy foam were investigated. With the increased infiltration pressure, preheat temperature and granule sizes during casting process, the molten AZ31 alloy was high fluidity. The optimum casting temperature, preheating temperature of the filler particle mould, and negative pressure were $750^{\circ}C$, $400-500^{\circ}C$, and 5000-6000 Pa, respectively, At these conditions the AZ31 alloy had good fluidity and castability with the longest infiltration length, fewer defects, and a uniform pore structure.

Gas-Phase Technology and Microstructure of Fullerite Films

  • A.S. Berdinsky;Chun, Hui-Gon;Lee, Jing-Hyuk;Song, Yong-Hwa;Yu. V. Shevtsov
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • The technology of $C_{60}$ fullerite films preparation by means of gas-phase deposition and structure of fullerite films are described. A three-channel flow plant was used to obtain fullerite films. The films were deposited in the flow of inert gas under reduced pressure onto a cooled silicon or sapphire substrate placed inside the reaction chamber of the plant. The plant allows one to obtain the films of pure fullerenes and to synthesise the films from fullerene compounds and doped fullerenes. The structure of two types of films were investigated by FE-SEM and SEM techniques: pure fullerite films onto silicon and sapphire substrates as well as compound films were studied by FE-SEM technique. All samples have shown columnar structure with high level of porosity. The synthesis of films composed of fullerene and its compounds for use in electronics is demonstrated to be promising. For example, experiments confirm the possibility to use fullerite films in sensor electronics to produce humidity and thermal sensors. It is also possible to use the sensitivity of these films to isotropic pressure. The experiments with $C_{60}$-Cu-J films have shown quite strong dependence of their resistance on pressure of different sort of medium-gas that could be used in gas-sensitive sensors. The structure and preparation technology of resistive sensor based on fullerite films are described.bed.

The Effect of Welding Method on the Electrochemical Behavior of Austenitic Stainless Steel Sheet

  • Kim, Young-Hune;Kim, Kyoo-Young
    • Corrosion Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.122-128
    • /
    • 2010
  • The corrosion of the flexible tube in the automobile exhaust system is caused by the ambient water and chloride ions. Since welding is one of the key processes for the flexible tube manufacturing, it is required to select a proper welding method to prevent the flexible tube corrosion and to increase its lifetime. There are many studies about the efficiency of the welding method, but no systematic study is performed for the effect of welding method on the corrosion property of the austenitic stainless weldment. The aim of the present study is to provide information on the effect of two different welding methods of TIGW (tungsten inert gas welding) and PAW (plasma arc welding) on the corrosion property of austenitic stainless steel weldment. Materials used in this study were two types of the commercial austenitic stainless steel, STS321 and XM15J1, which were used for flexible tube material for the automotive exhaust system. Microstructure was observed by using optical microscopy (OM) and scanning electron microscopy (SEM). To evaluate the corrosion behavior, potentiodynamic and potentiostatic tests were performed. The chemical state of the passive film was analyzed in terms of XPS depth profile. Metallurgical analysis show that the ferrite content in fusion zone of both STS321 and XM15J1 is higher when welded by PAW than by TIGW. The potentiodynamic and potentiostatic test results show that both STS321 and XM15J1 have higher transpassive potential and lower passive current density when welded by PAW than by TIGW. XPS analysis indicates that the stable $Cr_2O_3$ layer at the outermost layer of the passive film is formed when welded by PAW. The result recommends that PAW is more desirable than TIGW to secure corrosion resistance of the flex tube which is usually made of austenitic stainless steel.

Preparation, characterization and comparison of antibacterial property of polyethersulfone composite membrane containing zerovalent iron or magnetite nanoparticles

  • Dizge, Nadir;Ozay, Yasin;Simsek, U. Bulut;Gulsen, H. Elif;Akarsu, Ceyhun;Turabik, Meral;Unyayar, Ali;Ocakoglu, Kasim
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.51-71
    • /
    • 2017
  • Antimicrobial polyethersulfone ultrafiltration membranes containing zerovalent iron ($Fe^0$) and magnetite ($Fe_3O_4$) nanoparticles were synthesized via phase inversion method using polyethersulfone (PES) as membrane material and nano-iron as nanoparticle materials. Zerovalent iron nanoparticles (nZVI) were prepared by the reduction of iron ions with borohydride applying an inert atmosphere by using $N_2$ gases. The magnetite nanoparticles (nMag) were prepared via co-precipitation method by adding a base to an aqueous mixture of $Fe^{3+}$ and $Fe^{2+}$ salts. The synthesized nanoparticles were characterized by scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering analysis. Moreover, the properties of the synthesized membranes were characterized by scanning electron microscopy energy dispersive X-ray spectroscopy and atomic force microscopy. The PES membranes containing the nZVI or nMag were examined for antimicrobial characteristics. Moreover, amount of iron run away from the PES composite membranes during the dead-end filtration were tested. The results showed that the permeation flux of the composite membranes was higher than the pristine PES membrane. The membranes containing nano-iron showed good antibacterial activity against gram-negative bacteria (Escherichia coli). The composite membranes can be successfully used for the domestic wastewater filtration to reduce membrane biofouling.