• Title/Summary/Keyword: inequality technique

Search Result 155, Processing Time 0.039 seconds

ASYMPTOTIC BEHAVIOR OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENT

  • Yang, Yitao;Meng, Fanwei
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.333-343
    • /
    • 2010
  • The asymptotic behavior of solutions of higher order differential equations with deviating argument $$(py^{(n-1)}(t))'\;+\;\sum\limits_{i=1}^{n-1}ci(t)y^{(i-1)}(t)\;=\;f\[t,\;y(t),\;y'(t),\;{\ldots},\;y^{(n-1)}(t),\;y(\phi(t)),\;y'(\phi(t)),\;{\ldots},\;y^{(n-1)}\;(\phi(t))\]\;\;\;\;(1)$$ $t\;{\in}\;[0,\;\infty)$ is studied. Our technique depends on an integral inequality containing a deviating argument. From this we obtain some sufficient conditions under which all solutions of Eq.(1) have some asymptotic behavior.

Three-Axis Autopilot Design for a High Angle-Of-Attack Missile Using Mixed H2/H Control

  • Won, Dae-Yeon;Tahk, Min-Jea;Kim, Yoon-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.131-135
    • /
    • 2010
  • We report on the design of a three-axis missile autopilot using multi-objective control synthesis via linear matrix inequality techniques. This autopilot design guarantees $H_2/H_{\infty}$ performance criteria for a set of finite linear models. These models are linearized at different aerodynamic roll angle conditions over the flight envelope to capture uncertainties that occur in the high-angle-of-attack regime. Simulation results are presented for different aerodynamic roll angle variations and show that the performance of the controller is very satisfactory.

A Method using Parametric Approach for Constrained Optimization and its Application to a System of Structural Optimization Problems (제약을 갖는 최적화문제에 대한 파라메트릭 접근법과 구조문제의 최적화에 대한 응용)

  • Yang, Y.J.;Kim, W.S.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.1
    • /
    • pp.73-82
    • /
    • 1990
  • This paper describes two algorithms to Nonlinear programming problems with equality constraints and with equality and inequality constraints. The first method treats nonlinear programming problems with equality constraints. Utilizing the nonlinear programming problems with equality constraints. Utilizing the nonlinear parametric programming technique, the method solves the problem by imbedding it into a suitable one-parameter family of problems. The second method is to solve a nonlinear programming problem with equality and inequality constraints, by minimizing a square sum of nonlinear functions which is derived from the Kuhn-Tucker condition.

  • PDF

A Sliding Surface Design for Linear Systems with Mismatched Uncertainties based on Linear Matrix Inequality

  • Jang, Seung-Ho;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.561-565
    • /
    • 2005
  • Sliding mode control (SMC) is an effective method of controlling systems with uncertainties which satisfy the so-called matching condition. However, how to effectively handle mismatched uncertainties of systems is still an ongoing research issue in SMC. Several methods have been proposed to design a stable sliding surface even if mismatched uncertainties exist in a system. Especially, it is presented that robustness and efficiency of SMC for linear systems with mismatched uncertainties can be improved by reducing mismatched uncertainties in the reduced-order system. The reduction method needs a new sliding surface with an additional component based on Lyapunov redesign technique. In this paper, a stable sliding surface which contains additional component to reduce the influence of mismatched uncertainties, is introduced. It is designed by using linear matrix inequalities that guarantees the stability of the system. A numerical example demonstrates the validity of the proposed scheme.

  • PDF

Robust Mixed H2/H Filter Design for Uncertain Fuzzy Systems (불확실한 퍼지시스템의 견실한 혼합 H2/H 필터 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.557-562
    • /
    • 2004
  • This paper deals with a robust mixed ${H_2}/{H_{\infty}}$ filter design problem for a nonlinear dynamic system modeled as a T-S fuzzy system. Integral quadratic constraints are used to describe various kinds of uncertainties of the plant. A sufficient condition for solvability is given in terms of linear matrix inequality problem which can be efficiently solved using a convex optimization technique. In order to demonstrate the Proposed method, a numerical design example is provided.

A Study on the Tip Position Control of Flexible Beam by Linear Matrix Inequality

  • Kim, Chang-Hwa;Chu, Man-Suk;Yang, Joo-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.2-121
    • /
    • 2001
  • Many of today´s robot are required to perform tasks which demand a high level of accuracy in end-effector positioning. Those rigid robots are very inefficient and slow because its have large and heavy links, In an attempt to solve these problems, a robots using flexible beam were created. But the single-link flexible beam is infinite-dimensional system. Many researchers have proposed controlling such a beam an approximated model consisting of a finite a number of models. In this paper, we start by deriving the analytic model for the dynamics of general single-link beam, and a controller is designed for flexible beam with integral type servo system bases of the linear matrix inequality (LM) technique. To the end, simulation results show that a designed controller guarantees affective vibration control the single-link flexible beam.

  • PDF

ROBUST OUTPUT FEEDBACK $H\infty$ CONTROL FOR UNCERTAIN DELAYED SINGULAR SYSTEMS

  • Kim, Jong-Hae;Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.513-522
    • /
    • 2006
  • This paper considers a robust output feedback $H\infty$ controller design method for singular systems with time-varying delay in state and parameter uncertainty in system matrix by an LMI approach and observer based technique, which can be solved efficiently by convex optimization. The sufficient condition for the existence of controller and the controller design method are presented by strict LMI(linear matrix inequality) approach. Since the obtained condition can be expressed as an LMI form, all variables including feedback gain and observer gain can be calculated simultaneously by Schur complement and changes of variables.

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

Well-Conditioned Observer Design via LMI (LMI를 이용한 Well-Conditioned 관측기 설계)

  • 허건수;정종철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.21-26
    • /
    • 2003
  • The well-conditioned observer in a stochastic system is designed so that the observer is less sensitive to the ill-conditioning factors in transient and steady-state observer performance. These factors include not only deterministic issues such as unknown initial estimation error, round-off error, modeling error and sensing bias, but also stochastic issues such as disturbance and sensor noise. In deterministic perspectives, a small value in the L$_2$ norm condition number of the observer eigenvector matrix guarantees robust estimation performance to the deterministic issues and its upper bound can be minimized by reducing the observer gain and increasing the decay rate. Both deterministic and stochastic issues are considered as a weighted sum with a LMI (Linear Matrix Inequality) formulation. The gain in the well-conditioned observer is optimally chosen by the optimization technique. Simulation examples are given to evaluate the estimation performance of the proposed observer.

  • PDF

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF