• 제목/요약/키워드: inelasticity

검색결과 30건 처리시간 0.023초

패널 전단파괴형 복합 병렬 전단벽 접합부의 비선형 유한요소해석 (A Nonlinear Finite Element Analysis of Hybrid Coupled Shear Wall Connections governed Panel Shear Failure)

  • 한민기;김선우;박완신;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.175-178
    • /
    • 2005
  • The major object of this paper is to propose a nonlinear finite element analysis(FEA) technique of steel coupling beams-wall connections governed panel shear failure using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed steel coupling beams-wall connections. The developed models account for the effect of material inelasticity, concrete cracking, panel shear failure and geometric nonlinearity. In order to verify the proposed FEA model, this study attended experiment considered parameters to the steel beam : face bearing plates, and horizontal ties. And the analytical result attended by the proposed FEA model validated through comparisons with the experimental results. Finally, the study estimated the analytical values compared with ASCE Design Guidelines. At this time, the analysis showed good agreement between the theoretical and experimental results.

  • PDF

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

A New Paradigm for Wind Design

  • M. Burton;M. Tatarsky;I. Ashcroft
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.363-368
    • /
    • 2022
  • For taller buildings with unconventional architecture, refined structural systems or in geographical areas with high wind conditions, performance-based design can be seen as an enhanced design process and is either a supplement to, or alternative to a prescriptive code-based design. The ultimate goal of Performance-Based Wind Design (PBWD) is to result in a building that better addresses key goals of performance over the buildings full life cycle. Major innovations around the use of a PBWD approach include nonlinear dynamic analysis for wind design, limited inelasticity in the main wind force resisting system elements, and system-based performance criteria. This paper discusses potential considerations and benefits made when using a performance-based approach, in addition to the general practicality of use, for the structural design on a few key tall buildings.

불균등 단부 모멘트를 받는 I형강의 비탄성 좌굴거동에 관한 연구 (Inelastic Buckling Behavior of I-Beam with Unequal End Moment)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.257-265
    • /
    • 2004
  • line-type 유한요소법을 이용하여 불균등 단부 모멘트를 받는 보의 비탄성 좌굴 거동에 대하여 연구하였다. 잔류응력은 단순형과 다항식형 모델을 채택하였으며 잔류응력으로 인해 발생하는 단면의 불균등 항복을 고려하였다. 본 연구에서 얻어진 비탄성 횡-비틀림 좌굴에 대한 결과는 강구조편람의 허용응력법에 의한 설계 경우와 비교하였다. 결과적으로, 강구조편람에 의한 설계는 중지간 보에서 중간 브레이싱이 있는 경우나 없는 경우 모두 과설계가 됨을 알 수 있었다.

Towards improved floor spectra estimates for seismic design

  • Sullivan, Timothy J.;Calvi, Paolo M.;Nascimbene, Roberto
    • Earthquakes and Structures
    • /
    • 제4권1호
    • /
    • pp.109-132
    • /
    • 2013
  • Current codes incorporate simplified methods for the prediction of acceleration demands on secondary structural and non-structural elements at different levels of a building. While the use of simple analysis methods should be advocated, damage to both secondary structural and non-structural elements in recent earthquakes have highlighted the need for improved design procedures for such elements. In order to take a step towards the formation of accurate but simplified methods of predicting floor spectra, this work examines the floor spectra on elastic and inelastic single-degree of freedom systems subject to accelerograms of varying seismic intensity. After identifying the factors that appear to affect the shape and intensity of acceleration demands on secondary structural and non-structural elements, a new series of calibrated equations are proposed to predict floor spectra on single degree of freedom supporting structures. The approach uses concepts of dynamics and inelasticity to define the shape and intensity of the floor spectra at different levels of damping. The results of non-linear time-history analyses of a series of single-degree of freedom supporting structures indicate that the new methodology is very promising. Future research will aim to extend the methodology to multi-degree of freedom supporting structures and run additional verification studies.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • 제5권5호
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

비탄성 강재 부재의 좌굴 해석 (Buckling Analysis of Inelastic Steel Members)

  • 길흥배
    • 한국강구조학회 논문집
    • /
    • 제12권1호통권44호
    • /
    • pp.29-43
    • /
    • 2000
  • 본 연구에서는 비탄성 부재들의 좌굴 강도를 결정하기 위한 계산적으로 효율적인 비탄성 좌굴해석 프로그램이 개발되었다. 본 프로그램은 휨 좌굴, 휨-비틂 좌굴 혹은 국부좌굴에 의해 붕괴되는 탄성과 비탄성 부재들의 좌굴 강도 및 형상을 결정할 수 있다. 일축 대칭이나 2축 대칭인 I 형 부재를 해석할 수 있다. 복부판은 판 요소를 이용하여 모델되고, 플랜지는 보 요소로 모델되었다. 재료의 비탄성 응력-변형률 관계를 모사하기 위하여 다선형 등방경화 법칙과 증분이론이 사용되었다. 프로그램은 이론치와 실험값들을 이용하여 입증되었다. 프로그램의 결과는 이론치 및 실험값들과 잘 일치였다.

  • PDF

Inelastic vector finite element analysis of RC shells

  • Min, Chang-Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • 제4권2호
    • /
    • pp.139-148
    • /
    • 1996
  • Vector algorithms and the relative importance of the four basic modules (computation of element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simultaneous equations, and calculation of stresses and strains) of a finite element computer program for inelastic analysis of reinforced concrete shells are presented. Performance of the vector program is compared with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector program is 34 for the element stiffness matrices calculation, 25.3 for the assembly of global stiffness matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on a Gray Y-MP. The overall speedup factor is 30.9. When the equation solver alone is vectorized, which is computationally the most intensive part of a finite element program, a speedup factor of only 1.9 is achieved. When the rest of the program is also vectorized, a large additional speedup factor of 15.9 is attained. Therefore, it is very important that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers. The vector finite element computer program for inelastic analysis of RC shells with layered elements developed in the present study enabled us to perform mesh convergence studies. The vector program can be used for studying the ultimate behavior of RC shells and used as a design tool.

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.