• Title/Summary/Keyword: inelastic displacement

Search Result 237, Processing Time 0.023 seconds

Statistical Study of Ductility Factors for Elastic Perfectly Plastic SDOF Systems (탄소성 단자유도 구조물에 대한 연성계수의 통계적 분석)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • This paper present a summary of the results of statistical study of the ductility factor which is key component of response modification factor(R). To compute the ductility factor, a group of 1,860 ground motions recorded from various earthquake was considered. Based on the local site conditions at the recording station, ground motions were classified into four groups according to average shear wave velocity. Inleastic spectrum were computed for elastic perfectly plastic SDOF systems undergoing different level of inelastic deformation and period. Ductility factors were calculated by deviding elastic response spectrum by inelastic response spectrum. The influence f displacement ductility ratio, site condition, magnitude and epicentral distance on ductility factors were studied. The coefficient of variation was computed to evaluated the dispersion of ductility factors as the defined ratio of the standard deviation to the mean.

Experimental Study on Nonlinear Behaviors of A 1:12 Scale 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 관한 실험 연구)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.255-266
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames having non-seismic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional practice was selected. A 1:12 scale plane frame model was manufactured according to similitude law. A reversed lateral load test and a monotonic pushover test were performed under the displacement control. To simulate the earthquake effects, the lateral force distribution was maintained to be an inverse triangle by using a whiffle tree. From the tests, base shears, crack pattern, local rotations in the ends of critical members and the relations between interstory drift versus story shear are obtained. Based on test results, conclusions are drawn on the implications of the elastic and inelastic behaviors of a high-rise reinforced concrete frame having non-seismic details.

Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation (비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Seo, Ju-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • PGA (Peak Ground Acceleration) is the parameter which indicates the peak value for strong ground motion and is mainly due to the intensity of the seismic wave. Usually, seismic waves can consist of different characteristics and can have different effects on structures. Therefore, it may be undesirable that the effects of a seismic wave are evaluated only based on the PGA. In this study, time history analysis was executed with a single degree of freedom model for inelastic seismic analysis. The numerical model was assumed to be a perfect elasto-plastic model. Input accelerations were made with El Centro NS (1940), other earthquake records and artificial earthquakes. The displacement ductility demand and cumulative dissipated energy, which were calculated from other artificial earthquakes, were compared. As a result, different responses from other seismic waves which have the same PGA were identified. Therefore, an index which could reflect both seismic and structural characteristics is needed. The SI (Spectrum Intensity) scale which could be obtained from integration by parts of the velocity response spectrum could be an index reflecting the inelastic seismic response of structures. It can be possible to identify from correlation analysis among the SI scale, displacement ductility demand and cumulative dissipated energy that the SI scale is sufficient to be an index for the inelastic response of structures under seismic conditions.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (특수 적분해 경계요소법에 의한 2차원 및 3차원 동적 탄소성 응력 해석)

  • Kim, Jae-Suk;Owatsiriwong, Adisorn;Park, Kyung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • The particular integral formulation for two(2D) and three(3D) dimensional inelastic transient dynamic stress analysis is presented. The elastostatic equation is used for the complementary solution. Using the concept of global shape function, the particular integrals for displacement and traction rates are obtained to approximate acceleration of the inhomogeneous equation. The Houbolt time integration scheme is used for the time-marching process. The Newton-Raphson algorithm for plastic multiplier is used to solve the system equation. Numerical results of four example problems are given to demonstrate the validity and accuracy of the present formulation.

Yield displacement profiles of asymmetric structures for optimum torsional response

  • Georgoussis, George K.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.233-257
    • /
    • 2013
  • Given the yield shear of a single-story inelastic structure with simple eccentricity, the problem of strength distribution among the resisting elements is investigated, with respect to minimize its torsional response during a ground motion. Making the hypothesis that the peak accelerations, of both modes of vibration, are determined from the inelastic acceleration spectrum, and assuming further that a peak response quantity is obtained by an appropriate combination rule (square root of sum of squares-SRSS or complete quadratic combination-CQC), the first aim of this study is to present an interaction relationship between the yield shear and the maximum torque that may be developed in such systems. It is shown that this torque may be developed, with equal probability, in both directions (clockwise and anticlockwise), but as it is not concurrent with the yield shear, a rational design should be based on a combination of the yield shear with a fraction of the peak torque. The second aim is to examine the response of such model structures under characteristic ground motions. These models provide a rather small peak rotation and code provisions that are based on such principles (NBCC-1995, UBC-1994, EAK-2000, NZS-1992) are superiors to EC8 (1993) and to systems with a stiffness proportional strength distribution.

Evaluation of required seismic gap between adjacent buildings in relation to the Egyptian Code

  • Hussein, Manar M.;Mostafa, Ahmed A.;Attia, Walid A.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.219-230
    • /
    • 2021
  • International seismic codes stipulate that adjacent buildings should be separated by a specified minimum distance, otherwise the pounding effect should be considered in the design. Recent researches proposed an alternative method (Double Difference Combination Rule) to estimate seismic gap between structures, as this method considers the cross relation of adjacent buildings behavior during earthquakes. Four different criteria were used to calculate the minimum separation distance using this method and results are compared to the international codes for five separation cases. These cases used four case study buildings classified by different heights, lateral load resisting systems and fundamental periods of vibrations to assess the consistency in results for the alternative methods. Non-linear analysis was performed to calculate the inelastic displacements of the four buildings, and the results were used to evaluate the relation between elastic and inelastic displacements due to the ductility of structural elements resisting seismic loads. A verification analysis was conducted to guarantee that the separation distance calculated is sufficient to avoid pounding. Results shows that the use of two out of the four studied methods yields separation distances smaller than that calculated by the code specified equations without under-estimating the minimum separation distance required to avoid pounding.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Characterization and uncertainty of uplift load-displacement behaviour of belled piers

  • Lu, Xian-long;Qian, Zeng-zhen;Zheng, Wei-feng;Yang, Wen-zhi
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • A total of 99 full-scale field load tests at 22 sites were compiled for this study to elucidate several issues related to the load-displacement behaviour of belled piers under axial uplift loading, including (1) interpretation criteria to define various elastic, inelastic, and "failure" states for each load test from the load-displacement curve; (2) generalized correlations among these states and determinations to the predicted ultimate uplift resistances; (3) uncertainty in the resistance model factor statistics required for reliability-based ultimate limit state (ULS) design; (4) uncertainty associated with the normalized load-displacement curves and the resulting model factor statistics required for reliability-based serviceability limit state (SLS) design; and (5) variations of the combined ULS and SLS model factor statistics for reliability-based limit state designs. The approaches discussed in this study are practical and grounded realistically on the load tests of belled piers with minimal assumptions. The results on the characterization and uncertainty of uplift load-displacement behaviour of belled piers could be served as to extend the early contributions for reliability-based ULS and SLS designs.

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF