• Title/Summary/Keyword: inelastic

Search Result 1,217, Processing Time 0.026 seconds

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Inelastic response of multistory buildings under earthquake excitation

  • Thambiratnam, D.P.;Corderoy, H.J.B.;Gao, H.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.1
    • /
    • pp.81-94
    • /
    • 1994
  • It is well recognized that structures designed to resist strong ground motions should be able to withstand substantial inelastic deformations. A simple procedure has been developed in this paper to monitor the dynamic earthquake response (time-history analysis) of both steel and concrete multistorey buildings in the inelastic range. The building is treated as a shear beam model with three degrees of freedom per floor. The entire analysis has been programmed to run on a microcomputer and can output time histories of displacements, velocities, accelerations and member internal forces at any desired location. A record of plastic hinge formation and restoration to elastic state is also provided. Such information can be used in aseismic analysis and design of multistorey buildings so as to control the damage and optimize their performance.

Evaluation of Seismic Performance for Reinforced Concrete Piers Using Capacity Spectrum Method (역량스펙트럼 방법을 이용한 철근 콘크리트 교각의 내진성능 평가)

  • Song, Jong-Keol;Chang, Dong-Huy;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.185-194
    • /
    • 2004
  • To evaluate seismic performance of reinforced concrete piers two procedures for capacity spectrum method are presented. The capacity spectrum procedures include the reduction factor-ductility-period($R_{\mu}-{\mu}-T$)relationship in order to construct the inelastic demand spectra from the elastic demand spectra. Application of the procedures are illustrated by example analysis. Maximum displacements estimated by the procedures are compared to those by inelastic time history analysis for several artificial earthquakes. The results show that the maximum displacements estimated by the procedures are, on overall, smaller than those by the inelastic time history analysis.

  • PDF

A Study on the Inelastic Analysis of Planar Frames Subjected to Cyclic Loads Using Direct Method (직접해석법에 의한 반복하중을 받는 평면골조의 비탄성해석에 관한 연구)

  • 정일영;이상호;윤태호
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.65-74
    • /
    • 1995
  • Direct method developed for the inelastic analysis of planar frames subjected to monotonic loads is extended to cyclic loads. Two frame elements for Direct Method(inelastic truss and inelastic beam) are developed. The accuracy and reliability of the preposed method is verified by comparing the analysis results of example with step-by-step analysis. Direct Method is superior to Step-by-step analysis in view of reliability of solution and analysis cost.

  • PDF

The inelastic buckling of varying thickness circular cylinders under external hydrostatic pressure

  • Ross, C.T.F.;Gill-Carson, A.;Little, A.P.F.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.51-68
    • /
    • 2000
  • The paper presents theoretical and experimental investigations on three varying thickness circular cylinders, which were tested to destruction under external hydrostatic pressure. The five buckling theories that were presented were based on inelastic shell instability. Three of these inelastic buckling theories adopted the finite element method and the other two theories were based on a modified version of the much simpler von Mises theory. Comparison between experiment and theory showed that one of the inelastic buckling theories that was based on the von Mises buckling pressure gave very good results while the two finite element solutions, obtained by dividing the theoretical elastic instability pressures by experimentally determined plastic knockdown factors gave poor results. The third finite element solution which was based on material and geometrical non-linearity gave excellent results. Electrical resistance strain gauges were used to monitor the collapse mechanisms and these revealed that collapse occurred in the regions of the highest values of hoop stress, where considerable deformation took place.

Design Technique of Steel Structures using Practical Nonlinear Inelastic Analysis (실용적인 비선형 비탄성해석을 이용한 강구조 설계기술)

  • Kim Seung-Eock;Lee Dong-Ho;Jang Eun-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.971-976
    • /
    • 2006
  • This paper presents a design technique of steel structures subjected to static and dynamic loadings using practical nonlinear inelastic analysis software. The beam-column approach using the stability functions and the plastic hinge concept enables the software to suitably predict second-order effects and inelastic behavior of beam-columns. For dynamic analysis. the incremental from of the equation of motion is solved by the use of a step-by-step numerical integration procedure in which the assumption of constant acceleration over a small time step is employed. The accuracy of the analysis program is validated using the results of ABAQUS program and experimental tests. A user-friendly graphic interface of the software is developed to facilitate the modeling process and result interpretation of the problem. A design example of large span bridge is presented to detail the direct design process using the practical advanced analysis software.

  • PDF

Basic Research to Improve the Inelastic Performance of Resizing Algorithms (재분배 기법의 비선형 특성 개선을 위한 기초 연구)

  • Kwon Do-Hyung;Seo Ji-Hyun;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.535-540
    • /
    • 2006
  • Recently, the resizing algorithms based on the displacement participation factors have been developed for sizing members to satisfy stiffness criteria. It is proved that this resizing algorithms made for utilizing worker's stiffness design are practical and rational when applied to aseismatic design in the range of elastic until now. However, by the preceding research we confirmed that the inelastic performance of steel moment-resisting frame designed by resizing algorithms is not better than that of the frame before resizing. We present therefore a plan for improving inelastic performance of steel moment-resizing frame to which resizing algorithms applied in this paper.

  • PDF

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

Analysis of Underground Box Structures with Inelastic Soil Spring (비탄성 지반 스프링을 이용한 지하 구조물의 해석)

  • Oh, Chi-Woong;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.91-96
    • /
    • 2002
  • There are many methods for analyzing underground box structures. One is the method of Iterative removal of tensional spring. The other is the method of modeling of ground to 8-node elastic-plastic planar element. In this study, We use inelastic soil spring element for analyzing underground box structures. First, if N-value is over 50, the results of inelastic soil spring method is the same as the method of 8-node planar element in last stage. Second, as N is increasing, element forces in two methods are generally decreasing. Third, as N-value is increasing, element forces in two method are generally decreasing and displacement has decreasing incline. This is the same as the force-displacement curve of general underground structures.

Effect of Hysteretic Models on the Inelastic Design Spectra (비탄성 설계 스펙트럼에 의한 이력 모델의 효과)

  • 한상환;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.214-224
    • /
    • 1999
  • The design response spectrum has been widely used in seismic design to estimate force and deformation demands of structures imposed by Earthquake Ground Motion (EQGM). Inelastic Design Response Spectra (IDRS) to specify design yielding strength in seismic codes are obtained by reducing the ordinates of Linear Elastic Design Response Spectrum (LEDRS) by strength reduction factor (R). Since a building is designed using reduced design spectrum (IDRS) rather than LEDRS in current seismic design procedures it allows structures behave inelastically during design level EQGM. Inelastic Response Spectra (IRS) depend not only on the characteristics of the expected ground motion at a given site, but also on the dynamic properties and nonlinear characteristics of a structure. However, it has not been explicitly investigated the effect of different hysteretic models on IRS. In this study, the effect of hysteretic models on IRS is investigated.

  • PDF