• Title/Summary/Keyword: industrial wastewater sludge

Search Result 159, Processing Time 0.031 seconds

Current Status of Applied Korean Patents Regarding the Deep Sea Water (해양심층수 관련 국내 특허출원 동향)

  • Chung, Kap-Taeck;Lee, Sang-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.22 no.2
    • /
    • pp.261-271
    • /
    • 2009
  • Deep sea water exists at depths of over 200m under the sea. As no sunlight reaches it, photosynthesis does not take place within it, and it contains no organic matter. In addition, its temperature is maintained at a stable low level throughout the year, so it does not get mixed with the sea water on the surface. It contains a large amount of nutritious salts, whose cleanness is maintained. It is a marine resource that has matured for a long period of time. Research into deep sea water, which started in the 1970s, has been made around the whole world, including the USA and Japan. In Korea, research has been active in this area since 2000. As there has been a good amount of research into industrial applications for deep sea water, since 1993, patents for the relevant technologies have been applied. This paper intends to provide a resource to researchers of deep sea water, by summarizing of all domestic deep sea water-related patents applied with Korean Intellectual Property Office from 1993 to 2008. This research was conducted using a computer and KIPRIS Database owned by the Korea Institute of Patent Information. 'Deep sea water' was used as the search keyword. A total of 222 Korean patents relating to deep sea water have been registered on the basis of IPC. Of these, 126 patents relate to the manufacturing and the treatment of foods, foodstuffs, or non-alcoholic beverages(A23L), while 50 patents relate to the production for medical, dental, or cosmetic purposes(A61K). 38 patents relate to water purification, treatment of wastewater, sewage and sludge (C02F), while 8 patents relate to fishery and farming(A01K). In summary, it was found that studies for the practical use of deep sea water have been conducted in relation to the manufacturing and the treatment of foods, foodstuffs, beverages, and cosmetics.

Measurement of Ammonia Inhibition of Activated Sludge by DHA-INT (DHA-INT를 이용한 활성슬러지의 암모니아 저해도)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1969-1976
    • /
    • 2000
  • It is a time consuming work to identify the inhibition of unknown chemicals or industrial wastewater. Thus it is needed to establish a fast assay tool for finding a toxicant source. Biomass activity and ammonia inhibition were measured by DHAINT method. Ammonia inhibition tests were comprised of total ammonia inhibition and free ammonia inhibition. Those inhibitions were carried out by nitrifier and heterotroph each other with nitrifier inhibitor. The ammonia inhibition was proportional to an amount of total ammonia and pH increase. It meaned that a free ammonia played a key role for ammonia inhibition. however both total ammonia and free ammonia should be considered for an accurate assay of the ammonia inhibition. Nitrifier was more sensitive than heterotroph when the ammonia concentration above 3.000mg/L.

  • PDF

Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads (Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구)

  • 전수진;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

Temperature Effects on Type and Concentration of Substrate in Activated Sludge Process (활성(活性)슬러지공법(工法)에 있어서 유기물(有機物)의 성상(性狀)과 농도(濃度)에 따른 온도영향(溫度影響))

  • Choi, Eui So;Min, Kyung Sok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.45-56
    • /
    • 1985
  • This study was made to evaluate temperature effects on biological wastewater treatment particularly at the lower temperatures. Cell yield coefficients and other kinetic factors were compared by varying temperature for industrial wastes. Bench scale aeration-only complete mixing activated sludge(CMAS) units were operated at temperatures of $1^{\circ}$, $4^{\circ}$, $7^{\circ}$ and $10^{\circ}C$ with substrate concentrations of 5,000 and 200 mg/l COD. The study results indicate that the cell yields were computed to be 0.5 to 0.6 grams VSS per grams BOD removed, and were not influenced by temperature variations. The synthesis/total energy ratios were computed to be 0.45 to 0.58 and had a tendency to become larger at lower temperatures. The endogenous respiration rates were computed to be 0.07 to 0.08/day, and seemed to be independent of temperature. In addition, very little temperature effects were observed when F/M ratio and substrate concentrations were reduced.

  • PDF

The Effects of Phenol on Biokinetic Coefficient of Multiple Phenol Derivatives of 2,4-Dichlorophenol and 2,4-Dinitrophenol in Activated Sludge Process (활성슬러지공정에서 페놀이 2,4-디클로로페놀과 2,4-디니트로페놀을 함유한 복합페놀폐수의 미생물분해계수에 미치는 영향)

  • Lim, Gye-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.349-353
    • /
    • 1999
  • A study was carried out to see the effects of phenol on the biological degradation of a wastewater containing 2,4-dichlorophenol and 2,4-dinitrophenol and the biodegradation kinetic coefficients of Eckenfelder's modified model for the activated sludge process. The system containing base mix (BM) which was formulated with essential energy sources and nutrients was run down and washed out when 2,4-dichlorophenol and 2,4-dinitrophenol was introduced into the base mix unit without acclimation to phenol. Whereas for the system acclimated to phenol, the treatment efficiency was 91.9% in terms of $BOD_5$ and treatability for each chemical of phenol, 2,4-dichlorophenol, and 2,4-dinitrophenol was 99.8%, 43.3% and 62.5% based on concentration, respectively. Additional BM was added into the combined unit containing phenol, 2,4-dichlorophenol, 2,4-dinitrophenol so that the better treatment efficiency was achieved for each compound. The biokinetic coefficient of Eckenfelder's modified model without phenol acclimation was not estimated because the system did not reach the steady state. Thc coefficient for the phenol acclimation was 12.44 /day, however it was changed as 46.91 /day in addition of both of phenol acclimation and 47 mg/l of BM. The results presented above could be useful for the process design and further study in the field of biodegradation of benzene derivatives.

  • PDF

Removal of Ammonia-Nitrogen Contained in Landfill Leachate by Ammonia Stripping(I) (암모니아 탈기공정을 이용한 침출수의 암모니아성 질소제거(I))

  • Lee, Byung-Jin;Cho, Soon-Haing
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1893-1904
    • /
    • 2000
  • Nitrogen compounds are one of the major pollutants which cause eutrophication problems of the river or lake and red tides problems of the ocean. Currently available technologies for the removal of nitrogen compounds are mostly biological treatment. However, biological treatment is only effective for the wastewater which contains low concentration of nitrogen compounds. Leachate from solid waste landfill or industrial wastewater which contains high concentration of nitrogen can not be effectively treated by most of the currently available biological treatment technologies. With this connection. the objective of this study is to examine the applicability of ammonia stripping technology for the removal of high concentration of ammonia nitrogen compounds of the leachate from solid waste landfill. It can be concluded that ammonia stripping technology which was placed before the biological treatment process was very effective for the removal of high concentration of ammonium compounds. The chemical cost for the ammonia stripping was 16 percent higher than MLE process, so other methods like sludge recycling are needed for the reduction of operation cost. Further details are discussed in this paper.

  • PDF

Concrete Release agent using Low Cost High Performance Photocatalyst Materials (저비용 고성능 광촉매를 활용한 콘크리트 이형박리제 개발)

  • Park, Jong-Pil;Hwang, Byoung-Il;Yoo, Byung-Hyun;Lee, Dong-gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.610-616
    • /
    • 2020
  • Recently, the application of a photocatalyst to road structures is being attempted to solve environmental problems caused by fine particulate matter and automobile exhaust. The purpose of this study was to develop a release agent with GST (low-cost, high-performance photocatalyst produced from wastewater sludge). For this, the method of mixing and dispersing GST with the release agent was used first, and the removal performance of nitrogen oxide (NOx) was then checked. The best performance without a precipitation reaction was achieved using a stabilizing agent at 20 % in an outdoor exposure test for four weeks. The NO and NOx removal rate of the specimen demolded by applying the GST release agent developed in this study showed excellent effects of 200 to 400 % compared to the Plain material. To increase the performance of the GST release agent, it is necessary to improve the dispersibility of GST in the release agent and increase the amount of the nano-sized photocatalyst. In addition, the use of GST release agent in road structures and exposed concrete is expected to increase the NOx removal efficiency.

Evaluation of Concrete Materials for Desulfurization Process By-products (황부산물의 콘크리트 원료 활용 가능성 평가)

  • Park, Hye-Ok;Kwon, Gi-Woon;Lee, Kyeong-Ho;Kim, Moon-Jeong;Lee, Woo-Weon;Ryu, Don-Sik;Lee, Jong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • The landfill gas produced in landfill is generally made up of methane(CH4) and carbon dioxide(CO2) of more than 90%, with the remainder made up of hydrogen sulfide(H2S). However, separate pre-treatment facilities are essential as hydrogen sulfide contained in landfill gas is combined with oxygen during the combustion process to generate sulfur oxides and acid rain combined with moisture in the atmosphere. Various desulfurization technologies have been used in Korea to desulfurize landfill gas. Although general desulfurization processes apply various physical and chemical methods, such as treatment of sediment generation according to the CaCO3 generation reaction and treatment through adsorbent, there is a problem of secondary wastes such as wastewater. As a way to solve this problem, a biological treatment process is used to generate and treat it with sludge-type sulfide (S°) using a biological treatment process.In this study, as a basic study of technology for utilizing the biological treatment by-products of hydrogen sulfide in landfill gas, an experiment was conducted to use the by-product as a mixture of concrete. According to the analysis of the mixture concrete strength of sulfur products, the mixture of sulfur by-products affects the strength of concrete and shows the highest strength value when mixing 10%.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF