• Title/Summary/Keyword: industrial sewage sludge

Search Result 116, Processing Time 0.025 seconds

잔골재로서 하수준설토의 재활용에 관한 연구

  • Lee, Song;Chae, Jeom-Sik;Kim, Hyeok
    • 레미콘
    • /
    • no.10 s.69
    • /
    • pp.2-11
    • /
    • 2001
  • This paper describes the feasiblity of recycling sewage dredged soils as fine affrefate. This paper describes the feasibility of recycling sewage dredged soils as fine aggregate. The specific gravity of the dredged soils was smaller than that of sand due to the effect of dredged sludge. However, the grain size distribution of the dredged soils is relative well graded, and the results of the heavy metal concentration from the leaching test of the dredged soils was significantly lower than the requirements of the allowable criteria. Therefore, the effect of recycling of dredged soils on environment the as fine aggregate was negligible. Also, the specific gravity of the dredged and washed soils was similar to that of sand, and the dredged and washed soils for the most part showed lower heavy metal leaching characteristics than those of dredged soils, Also, the results of the study for evaluation the recycling feasibility of dredged and washed soils as fine affrefate. The organic impurity content of the dredged and washed soils was lower than the requirements of the Korean industrial Standards, and the mortar compressive strength using the washdredged soils also met those of the Korean industrial Standards. And, the strengths of the dredged and washed soils were over 95% of those of the NaOH-treated samples. Therefore, it is expected that the dredged soils will be able to be an alternative for fine aggregate.

  • PDF

Study of Trace Element and PAHs Distribution for Extensive Regulation Establishment in Raw Material of Compost on Organic Resource (퇴비원료기준 확대설정을 위한 유기성자원의 미량원소 및 PAHs 분포 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon Ik;Seong, Ki-Seog;Lee, Jeong-Taek;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.339-344
    • /
    • 2006
  • A lot of organic wastes have been produced from diverse industries, they must be tested by the regulation of fertilizer control act if reuse the organic wastes for agricultural utilization. The regulation has had only two criteria; the content of organic matter and 8 heavy metals. This study was conducted to evaluation trace element (boron, cobalt, molybdenum, and selenium) and distribution of organic compounds with different classification for complement the regulation in 16 organic waste materials(62 samples) collected from different regions and industries. Contents of boron(leather industry sludge, $154.2mg\;kg^{-1}$; food company sludge, $57.1mg\;kg^{-1}$), cobalt(industrial area sewage sludge, $95.2mg\;kg^{-1}$; metropolitan sewage sludge, $22.9mg\;kg^{-1}$), molybdenum(metropolitan sewage sludge, $40.1mg\;kg^{-1}$; food company sludge, $16.8mg\;kg^{-1}$), selenium (fiber industry sludge, $28.1mg\;kg^{-1}$; leather industry sludge, $16.9mg\;kg^{-1}$; food company sludge, $15.9mg\;kg^{-1}$) were highest compare to the other organic wastes. Total PAHs contents were the highest in paper-mill manufacture($3,462ug\;kg^{-1}$), and among the 16 PAHs, naphthalene, phenanthrene, pyrene, fluoroanthene, Anthracene and acenaphthene were detected more clearly than others in all kinds of organic resources.

Comparison of Single-stage Thermophilic and Mesophilic Anaerobic Sewage Sludge Digestion (단상 고온 및 중온 혐기성 하수 슬러지의 소화 공정 비교)

  • Jang, Hyun Min;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.532-536
    • /
    • 2016
  • In this study, single-stage continuous anaerobic reactors to treat sewage sludge were operated under different temperature (55 and $35^{\circ}C$; $R_{TAD}$ and $R_{MAD}$) to evaluate the reactor stability and performance of the thermophilic and mesophilic anaerobic digestion. During the overall digestion, both anaerobic reactors maintained quite stable and constant pH and total alkalinity (TA) values in the range of 6.5-8.0 and 3-4 g $CaCO_3/L$, respectively. After the start-up period, $R_{TAD}$ showed 10% higher VS removal efficiency than that of $R_{MAD}$ ($R_{TAD}$; 43.3%; $R_{MAD}$ : 33.6%). Although organic acids such as acetic and propionic acid were detected in both anaerobic reactors at the start-up period, all organic acids in $R_{TAD}$ and $R_{MAD}$ were consumed at the steady state condition. Also $R_{TAD}$ showed 31.4 % higher methane production rate (MPR) than that of $R_{MAD}$ at the steady state condition ($R_{TAD}$; 243 mL $CH_4/L/d$; $R_{MAD}$ : 185 mL $CH_4/L/d$). Meanwhile, the experimental results indicated similar methane yield between $R_{TAD}$ and $R_{MAD}$.

Simultaneous Treatment of Sewage Sludge and Food Wastewater Using Combined Digestion Process (혼합 소화공정을 통한 하수 슬러지와 음폐수 병합 처리)

  • Ha, Jeong Hyub;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.581-586
    • /
    • 2017
  • In this study, in order to find the feasibility of thermophilic biological pre-treatment for the co-digestion of food wastewater and sewage sludge, digestion efficiency of the combined thermophilic aerobic and mesophilic anaerobic process and its effect on methane production were investigated. Also, a lab-scale co-digestion process was operated to observe parameter changes according to the increase of organic loading rates using different dilution ratios of distilled water and food wastewater (1/3 [Run I], 2/3 [Run II] in addition to using the raw food wastewater [Run III]). The results indicated that co-digestion process maintained quite stable and constant pH during entire experiments. With regard to VS removal, the higher removal was observed in the combined process and the removal efficiency was 52.24% (Run I), 66.59% (Run II) and 72.53 (Run III), respectively. In addition, the combined process showed about an 1.6-fold improved methane production rate and significantly higher methane yield than that of using single anaerobic digestion process.

A Study on Estimation of Recycling Potential by Thermal Recovery of Landfilled Sludge (매립처분 오니류의 에너지회수이용 가능량 산정에 관한 연구)

  • Moon, Heesung;Kim, Kyuyeon;Son, Jihwan;Jeon, Taewan;Shin, Sunkyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.5-13
    • /
    • 2017
  • With the purpose of energy recovery from sludge having calorific value as fuel we investigated the current status and characteristics of sludge in Korea in order to understand the type and amount of sludge that can recover energy. 'The Status Report on Waste Generation and Treatment in Korea' announced that 152 million tons of wastes were generated nationwide in 2015 and 9.2 % of the whole waste disposed into landfills which includes 15.1 % of the total industrial wastes. The average of upper calorific values of sewage sludge was 3,021 kcal/kg and that of wastewater sludge was 2,472 kcal/kg respectively. In order to determine the sludge as fuel, each correlations between calorific value, carbon content and combustibility ratio were evaluated. In the study, the current status and characteristics of sludge in Korea were investigated in order to understand the type and amount of sludge as fuel to recover energy. It is predicted that if the energy of sludge having a calorific value of 6 MJ/kg($${\sim_=}1,500kcal/kg$$) or more is recovered as fuel, the amount of the sludge disposed into landfills can be reduced about 40 %.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Application of extracellular polymeric substances (EPSs)-bioflocculant for recovery of microalgae (미세조류 분리/회수를 위한 세포외 고분자물질 생물 응집제 활용)

  • Choi, Ohkyung;Dong, Dandan;Kim, Jongrack;Maeng, Sung Kyu;Kim, Keugtae;Lee, Jae Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • Microalgae are primary producers of aquatic ecosystems, securing biodiversity and health of the ecosystem and contributing to reducing the impact of climate change through carbon dioxide fixation. Also, they are useful biomass that can be used as biological resources for producing valuable industrial products. However, harvesting process, which is the separation of microalgal biomass from mixed liquor, is an important bottleneck in use of valorization of microalgae as a bioresource accounting for 20 to 30% of the total production cost. This study investigates the applicability of sewage sludge-derived extracellular polymeric substance (EPS) as bioflucculant for harvesting microalgae. We compared the flocculation characteristics of microalgae using EPSs extracted from sewage sludge by three methods. The flocculation efficiency of microalgae is closely related to the carbohydrate and protein concentrations of EPS. Heat-extracted EPS contains the highest carbohydrate and protein concentrations and can be a best-suited bioflocculant for microalgae recovery with 87.2% flocculation efficiency. Injection of bioflocculant improved the flocculation efficiency of all three different algal strains, Chlorella Vulgaris, Chlamydomonas Asymmetrica, Scenedesmus sp., however the improvement was more significant when it was used for flocculation of Chlamydomonas Asymmetrica with flagella.

Characteristics of wastewater treatment of sewage mixed with industrial wastewater (공장폐수가 혼합된 하수처리장의 하수처리 특성)

  • Ahn, June-Shu;Park, Wook-Keun;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3341-3352
    • /
    • 2011
  • In this study, characteristics of wastewater treatment of sewage intermittently mixed with industrial wastewater is examined by investigating the operational status of each unit operation and measuring water quality. The bioreactor operating condition was measured for MLSS concentration 2,000~3,000 mg/L, HRT 5.3~16.3 hour, SRT 2.8~66.6 day, and SVI frequently showed the value above 200 which was higher than the optimal range of 50~150. It is thought that the sludge is not in suitable condition for sedimentation caused by the incoming industrial wastewater. When industrial wastewater is come into the system, MLDO inside of bioreactor rapidly increased, rate of nitrification is steeply decreased, and Pin floc. is spilled in the secondary clarifier. In the observance of microorganism showed that various bacterial floc. and ciliata were found as well as actinomycetes and filamentous bacteria(Sphaeotilus) which is known to cause bulking. Efficiency of each unit operation was fairly good in average. However, efficiency of the bioreactor treatment showed high fluctuation by unstable operating condition by intermittently incoming industrial wastewater.

Heavy Metal and Amino Acid Contents of Soybean by Application of Sewage and Industrial Sludge (생활하수 및 산업폐수 슬러지 처리에 따른 콩의 중금속 및 아미노산 함량)

  • Moon, Kwang-Hyun;Kim, Jae-Young;Chang, Moon-Ik;Kim, Un-Sung;Kim, Seong-Jo;Baek, Seung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.268-277
    • /
    • 2013
  • This study investigates the effects of accumulated levels of heavy metals and nutrients of cultivated soybean plant tissues, after the continuous application of sewage sludge (SS) and industrial sludge (IS). SS and IS were applied to soybean plants at loading of 0, 11.25, 22.50, and 45.00 Mg/ha, and the contents of heavy metals (Cd, Pb, Ni, Cu, and Zn), proteins, and amino acids in the cultivated soybean plants were measured. The Cd content in the soybean was 0.02~0.05 mg/kg, which is within the safety level set in the standard, and that of Pb was 0.02~0.15 mg/kg, which is also within the safety level except for IS 45 Mg/ha. The soybean harvest quantity was higher in the treatment groups than the control group in the first year. However, in the second year, SS had lower harvest and IS had the same level or a decreasing tendency, compared with the control group. In the first year, the content of amino acid which followed handling of SS was increased in the sludge groups more than in the control group in the case of glutamate. However, the influence of continuous application was increased in the sludge groups in the case of amino acids of 12 types. In conclusions, the accumulation in soybean of heavy metals by sludge treatment is not a problem, but the decreased yields needs to be considered. In addition, the most appropriate level of sludge treatment was 11.25 Mg/ha.

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.