• Title/Summary/Keyword: industrial production

Search Result 5,393, Processing Time 0.039 seconds

Industrial Applications of Si-based Ceramics

  • Eichler, Jens
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.561-565
    • /
    • 2012
  • Due to their unique combination of properties, Si-based ceramics, such as silicon carbide (SiC), silicon nitride ($Si_3N_4$) and silicon oxide ($SiO_2$ as fused silica), have a range of industrial applications in fields such as the chemical industry, aluminum manufacturing, oil and gas production and solar cell production. For each materials group, examples of typical applications from various industry sectors are presented while taking into account the property fingerprint.

Development of Eco-Efficiency Indicators for Yeosu Industrial Park (여수산업단지의 생태효율성지표 개발에 관한 연구)

  • Kim, Jung-In;Yun, Chang-Han;Yoon, Hyung-Sun
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2010
  • The industrial ecology indicators(IEI) for Yeosu Industrial Park were developed using eco-efficiency indicator(EEI). The key factors for the creation of IEI were two parts. One part is the value of the products which is selected as the total production value, the amount of ethylene production, the amount of light oil production instead of the total sales volume for Yeosu Industrial Park, since the currency exchange and the price of raw materials varied every year. The other part is the environmental burden. The electric consumption, the industrial water consumption, and the amount of discharged waste water are all officially opened to the public, were used in the calculation. Based on the value for the year of 2004, the IEI value for 2006 became worse to 0.954, but, was expected to be 1.153, a 15% improvement, for 2015 if the current EIP project is successfully performed.

A Study on the Productivity Improvement of the Dicing Blade Production Process (다이싱 블레이드 제조공정의 생산성향상에 관한 연구)

  • Mun, Jung-Su;Park, Soo-Yong;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.147-155
    • /
    • 2016
  • Industry 4.0's goal is the 'Smart Factory' that integrates and controls production process, procurement, distribution and service based on the fundamental technology such as internet of the things, cyber physical system, sensor, etc. Basic requirement for successful promotion of this Industry 4.0 is the large supply of semiconductor. However, company I who produces dicing blades has difficulty to meet the increasing demand and has hard time to increase revenue because its raw material includes high price diamond, and requires very complex and sensitive process for production. Therefore, this study is focused on understanding the problems and presenting optimal plan to increase productivity of dicing blade manufacturing processes. We carried out a study as follows to accomplish the above purposes. First, previous researches were investigated. Second, the bottlenecks in manufacturing processes were identified using simulation tool (Arena 14.3). Third, we calculate investment amount according to added equipments purchase and perform economic analysis according to cost and sales increase. Finally, we derive optimum plan for productivity improvement and analyze its expected effect. To summarize these results as follows : First, daily average blade production volume can be increased two times from 60 ea. to 120 ea. by performing mixing job in the day before. Second, work flow can be smoother due to reduced waiting time if more machines are added to improve setting process. It was found that average waiting time of 23 minutes can be reduced to around 9 minutes from current process. Third, it was found through simulation that the whole processing line can compose smoother production line by performing mixing process in advance, and add setting and sintering machines. In the course of this study, it was found that adding more machines to reduce waiting time is not the best alternative.

Decolorization of dye solution using membrane bioreactor (MBR) by Trametes versicolor (막생물반응기(MBR)에 의한 염료용액의 처리연구)

  • Lee, Yuri;Kim, Hyun-Gi;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.10 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating textile wastewater. In this study, white rot fungus, Trametes versicolor KCTC 16781, were investigated for the decolorization of Reactive black 5 solutions. This fungus was able to degrade the dye solutions by the ligninolytic enzymes (laccase and MnP) produced. The enzyme activity remained constant until the end of reaction. The combined process of biological treatment and ceramic membrane showed better efficiency for decolorization and TOC removal than each single process.

  • PDF

Properties of Ni-SiC Composite Coating Layers Prepared by Electroplating Method (전해도금법으로 형성한 Ni-SiC 복합피막층의 특성)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Koo, Seok-Bon;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.160-165
    • /
    • 2006
  • Ni-SiC composite coating layers were prepared by electroplating method and their deposition rate, codeposition of SiC, morphology, surface roughness, hardness, wear and friction properties were investigated. It was found that the deposition rate and the codeposition of SiC in the composite coating layer increased with increasing concentration of SiC in the solution only at the early stage. Both of them reached certain maxima and then decreased with increasing concentration of SiC. Rough surface was obtained with increasing codeposition of SiC, which is probably due to the agglomeration of the SiC particle in the vicinity of surface. Vickers hardness increased with increasing codeposition of SiC and heat treatment at $300^{\circ}C$ in air for 1 hour. Wear volume decreased with increasing codeposition of SiC and friction coefficient increased with increasing codeposition of SiC at the early stage, and it became almost constant. Such wear and friction behaviors are desirable for the practical application.

An Integrated Production and Inventory Model in a Single-Vendor Multi-Buyer Supply Chain (단일 공급자 다수 구매자 공급체인에서 통합 생산 및 재고 모형)

  • Chang, Suk Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.3
    • /
    • pp.117-126
    • /
    • 2015
  • This paper is to analyze an integrated production and inventory model in a single-vendor multi-buyer supply chain. The vendor is defined as the manufacturer and the buyers as the retailers. The product that the manufacturer produces is supplied to the retailers with constant periodic time interval. The production rate of the manufacturer is constant for the time. The demand of the retailers is constant for the time. The cycle time of the vendor is defined as the elapsed time from the start of the production to the start of the next production, while the cycle times of the buyer as the elapsed time between the adjacent supply times from the vendor to the buyer. The cycle times of the vendor and the buyers that minimizes the total cost in a supply chain are analyzed. The cost factors are the production setup cost and the inventory holding cost of the manufacturer, the ordering cost and the inventory holding cost of the retailers. The cycle time of the vendor is investigated through the cycle time that satisfies economic production quantity with the production setup cost and the inventory holding cost of the manufacturer. An integrated production and inventory model is formulated, and an algorithm is developed. An numerical example is presented to explain the algorithm. The solution of the algorithm for the numerical examples is compared with that of genetic algorithm. Numerical example shows that the vendor and the buyers can save cost by integrated decision making.

Production of curdlan with agro-industrial byproduct by Agrobacterium sp. ATCC 31749

  • Jeong, Dae-Yeong;Kim, Hyeon-Suk;Seo, Hyeong-Pil;Lee, Nam-Gyu;Kim, Ji-Mo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.251-254
    • /
    • 2000
  • Effect of carbon sources including agro-industrial byproduct on cell growth and production of curdlan by Agrobacterium sp. ATCC 31749 was investigated. Maximal production of curdlan was obtained when the carbon source was sucrose. The conversion rate of curdlan from 2% (w/v) sucrose was 59%. Glucose, mannose and maltose were also found to be good carbon sources for production of curdlan. Production of curdlan increased up to 3% (w/v) glucose as the carbon source and then decrease as the concentration of glucose increased. The major components of agro-industrial byproduct (AIB) were glucose, maltose, and maltose, and maltotriose. Agrobacterium sp.ATCC 31749 utilized up to 25% (v/v) AIB and produced curdlan with 29.8g/1.

  • PDF

Value Chain Network of Environment and Safety for the Industry : Its Necessity and Disclosure (산업환경·생산안전 가치창출 네트워크 구축 필요성과 담론)

  • Kim, Jae Youn;Lee, Hankyung
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.62-72
    • /
    • 2016
  • These days, it seems to be a core time to build proactive prevention systems for small and medium sized enterprises due to the reinforced safety in the production process and the strong environmental regulations (ES) both at home and abroad. On the other hand, a network of experts that combines the industrial environment and production safety as well as even the knowledge services companies are not quite enough to prepare to support them. In this study, through a survey of experts the current statue of the convergence of industrial environment and production safety were reviewed, and the structure of knowledge ES cluster was proposed to overcome this current state. Detailed strategies such as the development and distribution of ES convergence methodology, ES efficiency analysis and an ES roundtable.

The Optimal Base-Stock Level in Assembly lines (조립 생산 시스템에서 최적 Base-Stock 수준)

  • Ko, Sung-Seok;Seo, Dong-Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.89-93
    • /
    • 2007
  • In this study, we consider an assembly line operated under a base-stock policy. A product consists of two parts, and a finished product transfers to a warehouse in which demands are satisfied. Assume that demands arrive according to a Poisson process and processing times at each production line are exponentially distributed. Whenever a demand arrives, it is satisfied immediately from an inventory in the warehouse if available; otherwise, it is backlogged and satisfied later by the next product exiting from production lines. In either case, an arriving demand automatically triggers the production of a part at both production lines. These two parts will be assembled into a product that eventually transfers to the warehouse. We obtain a closed form formula of approximation for delay time or lead time distribution of a demand when a base- stock level is s. Moreover, it can be applied to the optimal base-stock level which minimizes the total inventory cost. Numerical examples are presented to show our optimal base-stock level's quality.

Hightechnology industrial development and formation of new industrial district : Theory and empirical cases (첨단산업발전과 신산업지구 형성 : 이론과 사례)

  • ;Park, Sam Ock
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.2
    • /
    • pp.117-136
    • /
    • 1994
  • Contemporary global space economy is so dynamic that any one specific structural force can not explain the whole dynamic processes or trajectories of spatial industrial development. The major purpose of this paper is extending the traditional notion of industrial districts to functioning and development of new industrial districts with relation to the development of high technology industries. Several dynamic forces, which are dominated in new industrial districts in the modern space economy, are incorporated in the formation and dynamic aspects of new industrial districts. Even though key forces governing Marshallian industrial district are localization of small firms, division of labor between firms, constructive cooperation, and industrial atmosphere, Marshall points out a possibility of growing importance of large firms and non-local networks in the districts with changes of external environments. Some of Italian industrial districts can be regarded as Marshallian industrial districts in broader context, but the role of local authorities or institutions and local embeddedness seem to be more important in the Italian industrial districts. More critical implication form the review of Marshallian industrial districts and Italian industrial districts is that the industrial districts are not a static concept but a dynamic one: small firm based industrial districts can be regarded as only a specific feature evolved over time. Dynamic aspects of new industrial districts are resulting from coexistence of contrasting forces governing the functioning and formation of the districts in contemporary global space economy. The contrasting forces governing new industrial districts are coexistence of flexible and mass production systems, local and global networks, local and non-local embeddedness, and small and large firms. Because of these coexistence of contrasting forces, there are various types of new industrial districts. Nine types of industrial districts are identified based on local/non-local networks and intensity of networks in both suppliers and customers linkages. The different types of new industrial districts are described by differences in production systems, embeddedness, governance, cooperation and competition, and institutional factors. Out of nine types of industrial districts, four types - Marshallian; suppliers hub and spoke; customers hub and spoke; and satellite - are regarded as distinctive new industrial districts and four additional types - advanced hub and spoke types (suppliers and customers) and mature satellites (suppliers and customers) - can be evolved from the distinctive types and may be regarded as hybrid types. The last one - pioneering high technology industrial district - can be developed from the advanced hub and spoke types and this type is a most advanced modern industrial district in the era of globalization and high technology. The dynamic aspects of the districts are related with the coexistence of the contrasting forces in the contemporary global space economy. However, the development trajectory is not a natural one and not all the industrial districts can develop to the other hybrid types. Traditionally, localization of industries was developed by historical chances. In the process of high technology industrial development in contemporary global space economy, however, policy and strategies are critical for the formation and evolution of new industrial districts. It needs formation of supportive tissues of institutions for evolution of dyamic pattern of high technology related new industrial districts. Some of the original distinctive types of new industrial districts can not follow the path or trajectory suggested in this paper and may be declined without advancing, if there is no formation of supportive social structure or policy. Provision of information infrastructure and diffusion of an entrepreneurship through the positive supports of local government, public institutions, universities, trade associations and industry associations are important for the evolution of the dynamic new industrial districts. Reduction of sunk costs through the supports for training and retraining of skilled labor, the formation of flexible labor markets, and the establishment of cheap and available telecommunication networks is also regarded as a significant strategies for dynamic progress of new industrial districts in the era of high technology industrial development. In addition, development of intensive international networks in production, technology and information is important policy issue for formation and evolution of the new industrial districts which are related with high technology industrial development.

  • PDF