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In this study, we consider an assembly line operated under a base-stock policy. A product consists of two parts, and a

finished product transfers to a warehouse in which demands are satisfied. Assume that demands arrive according to a

Poisson process and processing times at each production line are exponentially distributed. Whenever a demand arrives, it

is satisfied immediately from an inventory in the warehouse if available; otherwise, it is backlogged and satisfied later by

the next product exiting from production lines. In either case, an arriving demand automatically triggers the production of

a part at both production lines. These two parts will be assembled into a product that eventually transfers to the

warchouse. We obtain a closed form formula of approximation for delay time or lead time distribution of a demand when

a base- stock level is s. Moreover, it can be applied to the optimal base-stock level which minimizes the total inventory

cost. Numerical examples are presented to show our optimal base-stock level's quality.
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1. Introduction

We consider an assembly line operated under a base-stock
inventory policy shown in <Figure 1>, which is an simple
example of a fork-join (see for reference [6]) production sys-
tem with a warehouse at the end. A product consists of two
parts. These parts are produced in each production line, and
assembled into a product, and this finished product transfers
to a warehouse. The incoming demands are satisfied at the

warehouse. We assume that the inter-arrival times of de-
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mands are exponentially distributed, and i.i.d. (independent
and identically distributed), and processing times at each pro-
duction line are exponentially distributed.

Whenever a demand arrives, it is satisfied instantaneously
from inventories at the warehouse if there is inventory; other-
wise, it is backlogged and satisfied later by the next product
that exits from the production lines. In either case, the arriv-
ing demand automatically triggers the production of a part
at both production lines. These two parts are assembled into

a product and this assembled product will move to the ware-
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house. We also assume that the system is controlled by a base
-stock policy with base-stock level s. This means that the in-
ventory level at time 0 is s and the system make products
until to reach the level s whenever demands occur. In addition,
because of the base-stock policy assumption the inventory level
never exceed s during the system’s operation time.

Production Line 1

O

Disassembly
Station

Assembly
Station

MO~

Production Line 2

<Figure 1> Assembly Production System

Although there has been extensive research on inventory
management, only a few papers are related to our study.
Initial work on stochastic multi-echelon inventory systems
of discrete-time appeared in Clark and Scarf 1], and a base-
stock policy was shown to minimize holding and back-order
costs (see also Federgruen and Zipkin [2, 3]). Schmidt and
Nahmias [8] extended their study to a two-stage assembly
system. For uncapacitated multistage assembly systems, Rosl-
ing [7] identified an optimal policy, which is a base-stock
policy in the absence of fixed order costs. For continuous
review systems, Glasserman and Wang [4] studied the trade-
off's between inventory levels and the delivery lead-time in
a limiting sense.

The rest of this paper is organized as follows. In Section
2, we introduce performance measures of interest such as
fill rate, back-order quantities and inventory level, and so
on. A closed form formula for the optimal base-stock level
and numerical examples for a Markovian system are given

in Section 3 and 4. Section 5 includes concluding remarks.

2. Notations and Preliminaries

Throughout this paper the following notations are used.
* JO(t) : the amount of on-hand inventory at time ¢
» B(t) : the amount of backorder at time ¢
+ J(¢) : the inventory position at time ¢, which is

I(t) = 10(t) - B(t)

- MEH

 QU(t) : the number of parts waiting or in-process in pro-
duction line 4 at time ¢

o Qt) =maz; Qz(t)

« W, : the nth part sojourn times in production line .

« W, : the response time of the nth product in the system,
which is W, = maz ; W,

» A, : the arriving time of the mth demand

« V.': the nth parts processing time at production line ¢

We assume that the inter-arrival times of arriving de-
mands, U, =A,—A,_,, are independent and identically
distributed, and independent of the processing time V,'. And,
V! for n>1 and i=1,2 are independent of each other.
In addition, we assume EV; < EU, for each i for the sys-
tem’s stability.

Now, for the system shown in <Figure 1> we describe
various interesting performance measures such as delay-time,
back-order quantity, inventory level, and so forth as well as
some related results.

When base-stock level s is zero, one can see that this
assembly system becomes the same one as the two-node
M/M/1 fork-join system. Through an evident connection
with a two- node fork-join system, the following results can
be easily obtained (see Ko and Serfozo [6]).

The part sojourn times at the nodes satisfy

(w, w2 5w, wh)
where

!
Wi =2V +maz 120];( Vi-U,).

d T
In here, — means “converge in distribution” and =9 means

“equal in distribution.”
Consequently,

W, =mazx {Wnl, I/V,f}i W=max { W, W?},

where W is the equilibrium response time of a demand.

In the sense of service of quality(QoS), a delay is one
of the most important measures in the analysis of system
performance. A QoS can be measured by the fill rate, which
is the fraction of demands that are met immediately. Let D,

be the delay experienced by the nth demand and D be a
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steady-state delay under the base-stock level s. Without
backorder, therefore, the fill rate can be calculated by
P(D=0). More generally, a service level can be defined
by P(D< )=, where 8 is a critical (allowable) de-
lay-time, and o is a target service level.

The following theorem shows the relationship between the
equilibrium delay D and equilibrium response time W in
the fork-join processing system, and it also can be applied
to the general arrival time and production time.

Theorem 2.1 : For the assembly production system defined
above with base-stock inventory policy of level s,

DiD

n

where Fp) = [T Ryetu)dE, (W),
0

Proof - since A, + W, is the completion time (the time ep-
och of the nth demand’s arrival time plus the nth assembled
product’s response time which is triggered by the nth de-
mand), it follows that

Dn+s :(An+ W;L_A7z+s)+:d (WVL_AS)+

where in the last term, A, is independent of W,. Then the
assertion follows by letting n—oo in the preceding ex-
pression.

In [6], we already established an accurate approximation
for Fy(t) in two-node M/M/1-type fork-join networks.

Using their results, we can obtain the following result.

Approximation 2.2 : If the demand process is a Poisson
process with rate X, and service times V| for i=1,2, are
exponentially distributed with rate p,;, then the following ap-

proximations are very accurate:

Fplt) =1—pje ™

(1= pge

Yot A
1 (

s *(’h"’"fz)t]
Tt TA

where t =0, v, =p,— X, and p, =X p,. Also

1 A s 1
: Yo Yt TAT it

Justification From Theorem 2.1,

Foft)= [ RylerwaF, )

~ ‘/‘Omﬁ’vw(t-f—u)/\((—);lg;—)%e*“du
Here F,.(t) is the approximation for £, (¢) introduced in
[6], and A, is the Erlang random variable with parameter
A and s since the demand process is Poisson process with
rate A. An evaluation of the integral yields the approximation
of a delay distribution.

To show that accuracy of our approximation for Fp(t)
is as good as that of the approximation for F,,(¢), we use
a sup norm distance between two distributions F and G de-
fined as

d(F, G) = sup tzO\F(t)_ G(t)l

Using the sup norm, the approximation for F,(t) is better

than for Fy(t), since

Folt) - Folt) | = [ OwLFW(Hu) — Fyft+u)|dF, (u)

< d(F,., Fy)

In other words, the approximation error for F,(¢) is always

smaller than or equal to that for Z7;,(¢), which are negligible
(see [6]).

Let D, B, and 7O be an equilibrium delay, the amount
of backorders and an on-hand inventory position, respec-
tively. Hence, because the assembly production system is an
overtaking-free queue, the distributional Little's law (see Haji
and Newell [5]) can be applied to obtain the following rela-
tionship of D and B. Here we let N'(¢) denote the number
of arrivals up to time ¢ for the equilibrium process (where
the time of the first inter-arrival time is distributed as the
forward recurrence time of the arrival process). That is,

N'(t) is the stationary version of the arrival process.

Lemma 2.3 : (Distributional Little’s Law for Delay and
Backorder)

B=YN"(D)

From this fact, one can compute the fill rate from the
probability of P(B=0). Next, we investigate more details
for performance measures. First of all, from the definition
of Q(t), the so-called work-in process (WIP or pipeline)
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inventory at time ¢, we can describe the total number of
products in the system at time t by IO(t)+ Q(t). It can
be also represented as B(t)+s because of the definition of
the base stock policy. So, we have

10@)+ Q) =B(t) +s.

Then, 7(¢), the inventory position at time t, is written as
I(t) =s— Q(t) since I(t) =I0(t) — B(t). Therefore, we can
figure out the followings.

10)=7)]" and BE) =@

where [z]t = maz {=,0} and [z]” =—min {z,0}. More-
over, the on-hand inventory 7O(t) and the amount of back-
orders B(t) can be written in terms of s and Q(t) as fol-

lows,
10()=[s— QW)]" and B(t)=[s— Q)"

Then, taking ¢ —oco leads the equilibrium distributions of
70O and B, and the probability distributions for them are
computed as,

P(Q=s) if k=0
P([Ozk)={P(Q:s—k) if 1<k<s
0 otherwise
_ oy [PlR<s) if k=0
P(B_k)_{P(Q=s—H<;) if k=1

From the approximation for P(Q < ¢) in [6], we are able
to obtain good approximated distributions for B and /O i
Markovian systems.

3. Optimal Base-Stock Level

In this section, we introduce an optimization problem as
an application of our results. That determines the optimal
base- stock levels s minimizing a expected total cost, which
consists of an inveniory cost and a backorder cost subject
to a fill rate constraint. There are two types of inventory
in the system : on-hand inventory (or finished goods) and
WIP inventory. The independent property of WIP with re-
spect to base-stock level s allows us to consider only
on-hand inventory.

The average total cost per unit time can be defined as

a function of s as follows,

C(s)Y=hIO+bB=h(s— Q) +bls—Q)”

- HEH

where h is a holding cost for on-hand inventory per unit
and b is a penalty cost for backorders per unit. When the
distribution of @Q is known, one can therefore obtain the dis-
tribution and mean of the costs as follows.

P(C(s)<c)=P(s—c/h< Q< s+c/h),
and

ElC(s)) =h(s—EQ) +(h+b)E[(s— Q).

Proposition 3.1 : The expected cost E[C(s)] is minimized

when the base-stock level s is

s =min {slP(Q=s+1) <h/(h+b)}

Proof since
Ells— Q)] =k2 (k—s)P(Q=F),

it follows that
Elc(s+D)]-ElC(s)|=h—(h+b) P(Q> s+1).

It is clear that this is a nondecreasing function in s and
E[C(s)] is unimodal. Therefore, it attains its minimum at
min {s!E[C(s+1)] = E[C(s)]}, which equals to (1).

4. Numerical Examples

An application of our optimal base-stock result requires
knowledge of @, the equilibrium distribution of the number
of parts, in the fork-join network. We will consider a
two-node Markovian system, in which the Poisson demand
has rate X, and exponential processing times have rates u,

and py (py = py).
In order to determine the optimal base-stock level (s"),

<

we use the approximation for @ in [6], which is

—~ ,5t1
=~ P

+(1= Sl

P(Q=s+1)
A

s+1y
7 FYr A

Comparing the resulting s~ with its upper and lower
bounds shows the accuracy of our results. These upper and
lower bounds can be computed by the following probabilities
of P(Q=s+1).

P(Q=s+1)=pi"",
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<Table 1> p, =0.9

<Table 2> p, =0.5

<Table 3> p, =01

) b s ) Sy Mo b s 5y sy Mo b s sz Sy
111 2 14 10 15 2.00 2 2 2 I 10.00 2 0 0 0
111 4 20 15 21 2.00 4 3 3 2 10.00 4 0 0 0
L6 23 18 | 200 | 6 3 3 2 1000 | 6 I 1 0
L |8 25 0 | 2 200 | 8 3 4 3 1000 | 8 1 1 0
1.11 10 27 22 29 2.00 10 4 4 3 10.00 10 1 1 1
167 | 2 10 10 10 3.00 | 2 1 1 1 1500 | 2 0 0 0
167 | 4 15 15 15 3.00 | 4 2 2 2 1500 | 4 0 0 0
167 | 6 18 18 18 300 | 6 3 3 2 1500 | 6 0 0 0
167 | 8 20 | 20 20 3.00 | 8 3 3 3 1500 | 8 I 1 0
1.67 10 22 22 22 3.00 10 3 3 3 15.00 10 1 l 1
12 | 2 10 10 0 || 400 | 2 1 1 1 20.00 0 0 0
222 | 4 15 15 15 400 | 4 2 2 2 2000 | 4 0 0 0
222 | 6 18 18 18 4.00 2 2 2 20.00 0 0 0
222 | 8 20 | 20 20 || 400 | 8 3 3 3 2000 | 8 i 1 0
220 | 10 2 | » 2 400 | 10 3 3 3 2000 | 10 1 1 1
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5. Conclusion

In this study, we consider a simple assembly line operated
under a base-stock policy. We obtain a closed form formula
of approximation for delay time or lead time distribution of
a demand when a base-stock level is s. Moreover, it can
be applied to the optimal base-stock level which minimizes
the total inventory cost.
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