• Title/Summary/Keyword: industrial column

Search Result 454, Processing Time 0.025 seconds

Application of Bypass Flow for Improving Performance of the Vertical Column Pneumatic Separator (수직(垂直)컬럼형(形) 풍력선별기(風力選別機)의 분리효율향상(分離效率向上)을 위한 bypass유로(流路)의 적용(適用))

  • Lee, Gye-Seung;Song, Young Jun;Yotsumoto, Hiroki
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 2013
  • A vertical column pneumatic separator was modified to improve its separation performance. A branch column was installed at the center of the main column, which created a bypass flow and changed the flow rate of the main column before and after the branch column. To separate a mixture comprising light and heavy materials, the airflow in main column after the branch column was set to lift the only light materials and the airflow in main column before the branch column was set to prevent the flow of the light materials from flowing downwards. Materials directed into the branch column were separated from the flow and returned to the feeder through the cyclone linked to the branch column. The performances of the straight-type separator and the modified separator were compared using glass and zirconia beads with a narrow size distribution.

Development of Machine Learning-Based Platform for Distillation Column (증류탑을 위한 머신러닝 기반 플랫폼 개발)

  • Oh, Kwang Cheol;Kwon, Hyukwon;Roh, Jiwon;Choi, Yeongryeol;Park, Hyundo;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.565-572
    • /
    • 2020
  • This study developed a software platform using machine learning of artificial intelligence to optimize the distillation column system. The distillation column is representative and core process in the petrochemical industry. Process stabilization is difficult due to various operating conditions and continuous process characteristics, and differences in process efficiency occur depending on operator skill. The process control based on the theoretical simulation was used to overcome this problem, but it has a limitation which it can't apply to complex processes and real-time systems. This study aims to develop an empirical simulation model based on machine learning and to suggest an optimal process operation method. The development of empirical simulations involves collecting big data from the actual process, feature extraction through data mining, and representative algorithm for the chemical process. Finally, the platform for the distillation column was developed with verification through a developed model and field tests. Through the developed platform, it is possible to predict the operating parameters and provided optimal operating conditions to achieve efficient process control. This study is the basic study applying the artificial intelligence machine learning technique for the chemical process. After application on a wide variety of processes and it can be utilized to the cornerstone of the smart factory of the industry 4.0.

A Branch-and-price Approach to the ATM Switching Node Location Problem

  • Kim, Deokseong;Park, Sunsoo;Lee, Kyungsik;Park, Kyungchul
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.92-99
    • /
    • 2004
  • We consider the ATM switching node location problem (ANLP). In this problem, there are two kinds of facilities, hub facilities and remote facilities, with different capacities and installation costs. We are given a set of customers with each demand requirements, a set of candidate installation sites of facilities, and connection costs between facilities. We need to determine the locations to place facilities, the number of facilities for each selected location, the set of customers who are connected to each installed hub via installed remote facilities with minimum cost, while satisfying demand requirements of each customer. We formulate this problem as a general integer programming problem and solve it to optimality. In this paper, we present a preprocessing procedure to tighten the formulation and develop a branch-and-price algorithm. In the algorithm, we consider the integer knapsack problem as the column generation problem. Computational experiments show that the algorithm gives optimal solutions in a reasonable time.

Investigation on the seismic performance of T-shaped column joints

  • Chen, Changhong;Gong, He;Yao, Yao;Huang, Ying;Keer, Leon M.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.335-344
    • /
    • 2018
  • More and more special-shaped structural systems have been widely used in various industrial and civil buildings in order to satisfy the new structural system and the increasing demand for architectural beauty. With the popularity of the special-shaped structure system, its seismic performance and damage form have also attracted extensive attention. In the current research, an experimental analysis of six groups of (2/3 scale) T-shaped column joints was conducted to investigate the seismic performance of T-shaped column joints. Effects of the beam cross section, transverse stirrup ratio and axial compression ratio on bearing capacity and energy dissipation capacity of column joints were obtained. The crack pattern of T-shaped column joints under low cyclic load was presented and showed a reversed "K" mode. According to the crack configurations, a tensile-shear failure model to determine the shear bearing capacity and crack propagation mechanisms is developed.

Analysis of Horizontal Behavior of a Single Column/Shaft by Horizontal Two-way Pile Load Test (반복수평재하시험을 통한 단일형현장타설말뚝의 거동분석)

  • Jeong, Sang-Seom;Song, Sung-Wook;Kim, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1132-1143
    • /
    • 2008
  • A single Column/Shaft which extended the pile to the column of the bridge with same diameter has better safety and economical profit, but it usually has larger lateral displacement due to lateral loads such as wind, earthquake, wave, etc. A series of horizontal pile load testing were performed to study the lateral behavior of single column/shaft with varying different free lengths and embedded pile lengths. Eight instrumented test piles were cast-in-placed by bonding strain gauges at certain locations on both faces of the pile to measure bending moment, from two-way loadings. Linear variable differential transformers(LVDTs) were installed to measure the lateral pile displacement. Based on this, it is found that the test single column/shaft with different free lengths shows different failure modes. If the test pile has a longer free length, the failure occurs at the near the ground surface, but the shorter one's failure occurs at the below the ground surface.

  • PDF

Axial and Radial Gas Holdup in Bubble Column Reactor

  • Wagh, Sameer M.;Ansari, Mohashin E. Alam;Kene, Pragati T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1703-1705
    • /
    • 2014
  • Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path.

On the Pyrolysis of Polymers II. Identification of the Products from Polymer Pyrolysis by Gas Chromatography (高分子物質의 熱分解에 關한 硏究 (第2報) Gas Chromatography 에 依한 熱分解生成物의 檢索)

  • Chwa-Kyung Sung
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.106-114
    • /
    • 1963
  • The products from polymer pyrolysis at $450^{\circ}$ are cooled with ice, then liquid and gaseous portions are analysed by gas chromatography. Di-2-ethyl hexyl sebacate column, silicone oil column, silica gel column and tetraethyleneglycol dimethylether column, which was most effective for the separation of hydrocarbon gases, are used. Identification of isomers could be secured more effectively by gas chromatography than mass spectrometry. Elucidation of the mechanism for thermal decomposition of polymers could be done through the identification of pyrolysis products. Although more extensive work is needed, some patterns of polymer pyrolysis are discussed.

  • PDF

Centrifuge Tests on Compression Performance of Octagonal Concrete Filled Tube Column to be applied to Top-Down Construction Method (역타공법에 적용되는 팔각 콘크리트충전 강관의 압축성능을 위한 원심모형실험)

  • Kim, Dong-Kwan;Lee, Seung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.9-16
    • /
    • 2017
  • To improve concrete-filled tube (CFT) columns, an octagonal concrete-filled tube (OCFT) column was developed. Because the OCFT column requires a small boring diameter, the OCFT column is suitable for Top-Down construction method. In this study, the compression performance of OCFT column to be used as Top-Down pile foundation was verified using centrifuge equipment. Under 12 g centrifugal acceleration, the bearing capacities of the pile foundations of OCFT and H-shaped sections were tested. When the pile foundations were embedded in soil of full depth, 45 % of the design strength, which was assumed to be the construction load, was supported by the OCFT and H-shaped sections in the elastic states. When the pile foundations were embedded in soil of half depth, the buckling of the pile foundations was not investigated. After the loading test, the rock at the bottom of pile foundation, which had a strength of 3.5 MPa, was not damaged due to 45 % of the design strength.

Fe0/C-bentonite alginate beads and oyster shell fixed-bed column combined process to continuously remove N-acetyl-p-aminophenol in persulfate system

  • Wang, Bing-huang;Zhang, Qian;Honga, Jun-ming
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.301-311
    • /
    • 2018
  • In this study, the ion-gelation method was applied to fabricate novel Fe-carbon-bentonite-alginate beads ($Fe^0$/C-BABs). $Fe^0$/C-BABs could effectively control Fe release during persulfate (PS) activation in N-acetyl-p-aminophenol (APAP) oxidation. A novel two-stage approach that combined $Fe^0$/C-BABs and an oyster-shell-filled bed (OSFB) column was developed to address the low pH and high Fe concentration of the effluent of the traditional PS process. The application of the $Fe^0$/C-BABs and OSFB column regulated pH levels and Fe release during the advanced oxidation of APAP. The characteristics of $Fe^0$/C-BABs were also investigated through scanning electron microscopy, energy dispersive spectrometry, and Fourier transform infrared spectroscopy. The long-term operation performance of $Fe^0$/C-BABs in a continuous fixed-bed reactor under simultaneous PS and APAP feeding was also evaluated. The effects of initial PS concentration, pH, fixed-bed weight, in-flow rate, and dissolved oxygen (DO) were investigated. Under selected conditions, 86.3% efficiency was achieved during the first stage of APAP degradation (effluent pH of 3.05, Fe contents: $106.25mgL^{-1}$). Water quality improved after the effluent was passed through the OSFB column (effluent pH of 6.32, Fe contents: $21.43mgL^{-1}$). Moreover, this study analyzed the free radicals and intermediates produced during APAP degradation to identify the possible routes of APAP degradation.