• 제목/요약/키워드: industrial biotechnology

검색결과 1,816건 처리시간 0.033초

곤충생물공학의 현재와 전망 (Present and Perspective on Insect Biotechnology)

  • 최환석;김선암;신현재
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.257-267
    • /
    • 2015
  • Insects are the most successful organisms on earth in terms of their diversity and adaptability. Insect biotechnology using this insect resource is an emerging area for future biotechnology with various applications. Insect resources have long been used to make food and/or functional food, feed, cosmetics as well as medicine and industrial ingredients. Recently, one of the most well-known industrial material from insect is spider silk that could be commercialize in near future. The insect cell lines have been used to express recombinant proteins that were difficult to be functional expression. For public purpose, while, the insect could be good amenity source and plant farming, so leisure resource. Only the interdisciplinary research will guarantee the successful story for insect biotechnology. And biochemical engineers should used insect as a bioresource for new products with applications in medicine, agriculture, and industrial biotechnology in near future. This review will cover state-of-the art of this field and the research and application areas of insect biotechnology and the possible role of biochemical engineer for the development of the future biotechnology using this bioresource.

Perspectives on Platform Industrial Biotechnology

  • Kim, Sang-Yong;Park, Chul-Hwan;Lee, Jung-Heon;Lee, Seung-Goo;Kim, Seon-Won;Kim, Hyung-Kwoun;Kim, Geun-Joong;Kim, Seung-Wook;Shin, Chul-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.181-181
    • /
    • 2005
  • PDF

Proteomic Analysis of Protein Expression Patterns Associated with Astaxanthin Accumulation by Green Alga Haematococcus pluvialis (Chlorophyceae) Under High Light Stress

  • Kim Jeong-Dong;Lee Woo-Sung;Kim Beob-Min;Lee Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1222-1228
    • /
    • 2006
  • Two kinds of Haematococcus pluvialis cells (green vegetative cells cultivated under optimal cell culture conditions and red cyst cells maintained under high light stress conditions to induce astaxanthin production) were used to investigate the protein expression profiles by two-dimensional electrophoresis, image analysis, and peptide mass fingerprinting. The cellular accumulation of astaxanthin was evident after exposure to high light intensity and reached the maximum cellular level after 78 h of high light stress. In a 2-D electrophoresis analysis, 22 proteins were upregulated over 2-fold in the red cyst cells when compared with the green vegetative cells and selected for further analysis by chemically assisted fragmentation (CAF)-MALDI-TOF sequencing to identify the protein functions. Among 22 different spots, several key enzymes specific to the carotenoid pathway, including isopentenyl pyrophosphate isomerase (IPP) and lycopene $\beta$-cyclase, appeared in H. pluvialis after exposure to high light intensity. Therefore, IPP and lycopene $\beta$-cyclase would appear to be involved with carotenoid accumulation in the cytoplasm, as these peptides were preferentially upregulated by high light intensity preceding an increase in carotenoid, and only these forms were detected in the red cyst cells.

Simple Monodimensional Model for Linear Growth Rate of Photosynthetic Microorganisms in Flat-Plate Photobioreactors

  • Kim, Nag-Jong;Suh, In-Soo;Hur, Byung-Ki;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권6호
    • /
    • pp.962-971
    • /
    • 2002
  • The current study proposes a simple monodimensional model to estimate the linear growth rate of photosynthetic microorganisms in flat-plate photobioreactors (FPPBRs) during batch cultivation. As a model microorganism, Chlorella kessleri was cultivated photoautotrophically in FPPBRs using light-emitting diodes (LEDs) as the light sources to provide unidirectional irradiation in the photobioreactors. Various conditions were simulated by adjusting both the intensity of the light and the height of the culture. The validity of the proposed model was examined by comparing the linear growth rates measured with the predicted ones obtained from the proposed model. Accordingly, the value of $\frac{K\cdot\mu m}{\alpha\cdot L}log(I_0\cdot{I_s}^{\varepsilon 1)\cdot {I_c}^{-\varepsilon})$ was proposed as an approximate index for strategies to obtain the maximal lightn yield under light-limiting conditions for high-density algal cultures and as a control parameter to improve the photosynthetic productivity and efficiency.

A Newly Isolated Rhizopus microsporus var. chinensis Capable of Secreting Amyloytic Enzymes with Raw-Starch-Digesting Activity

  • Li, Yu-Na;Shi, Gui-Yang;Wang, Wu;Wang, Zheng-Xiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.383-390
    • /
    • 2010
  • A newly isolated active producer of raw-starch-digesting amyloytic enzymes, Rhizopus microsporus var. chinensis CICIM-CU F0088, was screened and identified by morphological characteristics and molecular phylogenetic analyses. This fungus was isolated from the soil of Chinese glue pudding mill, and produced high levels of amylolytic activity under solid-state fermentation with supplementation of starch and wheat bran. Results of thin-layer chromatography showed there are two kinds of amyloytic enzymes formed by this strain, including one $\alpha$-amylase and two glucoamylases. It was found in the electron microscope experiments that the two glucoamylases can digest raw corn starch and have an optimal temperature of $70^{\circ}C$. These results signified that amyloytic enzymes secreted by strain Rhizopus microsporus var. chinensis CICIM-CU F0088 were types of thermostable amyloytic enzymes and able to digest raw corn starch.

Fiber-based Diffuser Sheet for Liquid Crystal Display Backlight Unit

  • Kim, Taehyung;Lee, Eun Soo;Jeong, Won Young;Lim, Dae Young;Choi, Suk-Won
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.251-255
    • /
    • 2014
  • A fiber diffuser sheet based on poly (ethylene naphthalate) (PEN) and poly (methylpentene) (PMP) has shown potential for liquid crystal display backlight units, but these materials have an interfacial adhesion problem. To improve the interfacial adhesion between the fibers and matrix components, we have proposed the use of amorphous poly (cyclohexane-1,4-dimethylene terephthalate) (Tritan) instead of PEN. Furthermore, the fabrication processes have been optimized and simplified to improve the optical and mechanical properties of the sheet. As a result, the most effective fiber content for achieving the best haze characteristics of a sample consisting of Tritan and PMP has been identified.

Overexpressions of xylA and xylB in Klebsiella pneumoniae Lead to Enhanced 1,3-Propanediol Production by Cofermentation of Glycerol and Xylose

  • Lu, Xinyao;Fu, Xiaomeng;Zong, Hong;Zhuge, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1252-1258
    • /
    • 2016
  • 1,3-Propanediol (1,3-PD) is a valuable platform compound. Many studies have shown that the supplement of NADH plays a key role in the bioproduction of 1,3-PD from Klebsiella pneumoniae. In this study, the xylA and xylB genes from Escherichia coli were overexpressed individually or simultaneously in K. pneumoniae to improve the production of 1,3-PD by cofermentation of glycerol and xylose. Compared with the parent strain, the xylose consumption was significantly increased by the introduction of these two genes. The 1,3-PD titers were raised from 17.9 g/l to 23.5, 23.9, and 24.4 g/l, respectively, by the overexpression of xylA and xylB as well as their coexpression. The glycerol conversion rate (mol/mol) was enhanced from 54.1% to 73.8%. The concentration of 2,3-butanediol was increased by 50% at the middle stage but drastically decreased after that. The NADH and NADH/NAD+ ratio were improved. This report suggests that overexpression of xylA or xylB is an effective strategy to improve the xylose assimilation rate to provide abundant reducing power for the biosynthesis of 1,3-PD in K. pneumoniae.