• 제목/요약/키워드: induction motor drive system

검색결과 449건 처리시간 0.033초

퍼지 알고리즘을 이용한 유도전동기 간접벡터제어기의 설계와 엘리베이터 속도제어 시스템의 응용 (Design of Indirect Vector Controller of Induction Motor using Fuzzy Algorithm and apply to the Speed Control System of Elevator)

  • 경제문;김훈모
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2000
  • In general, speed control method of the elevator system has used motor pole change type or motor primary voltage control type. But it will change to vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control type in order to increase it's reliability, riding comfort and decrease material cost. It is the conception of vector control that primary current of the induction motor be controlled independently with magnetizing current(field current of DC motor) and torque current(armature current of DC motor). In this paper, by analyzing the effect of the time constant variation of rotor of the induction motor on the slip frequency type indirect vector control, a drive system for the motor will be constructed using a fuzzy slip frequency type indirect vector controller with fuzzy control method for estimating the vector time constant in the slip frequency type indirect vector control. The goal of this study is to enabling even more efficient speed control by constructing on elevator driver based on the newly developed drive system.

  • PDF

슬립적환에 의한 유도전동기의 최적효과 차전에 관한 연구 (The Optimal Efficiency Drive of an Induction Motor by Slip Feedback)

  • 박민호;설승기;김흥근;정승기
    • 대한전기학회논문지
    • /
    • 제32권3호
    • /
    • pp.90-98
    • /
    • 1983
  • The method to improve the efficiency of a slightly loaded induction motor is suggested. It is based upon the optimal efficiency slip tracking by adjusting the voltage to frequency ratio(V/f). It is adopted the converter-inverter fed induction motor drive system. All the control loops are implemented bh the Z-80 microprocessor. By this method, 10% or more improvement is achieved at a few fraction of the full load.

Sensorless Vector Control of a Wound Induction Motor Using MRAS with On-Line Stator Resistance Tuning

  • Lee Jae-Hak;Kim Yoon-Ho;Lee Houng-Gyun;Woo Hyuk-Jae
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.462-465
    • /
    • 2001
  • The wound induction motor can provide high starting torque and reduced starting current simultaneously by inserting large scale resistor. And this technique is one of the well known methods among the induction motor starting methods and generally used for heavy load starting such as Crain and Cement factories. The conventional PI controller has been widely used in industrial application due to the simple control algorithm and in general, PI controller is used for control of current, torque, position, and speed for the wound induction motor drive system. However, the system may result in poor performance since sensors have to be used, which in turn is limited by the environmental condition. Recently, to overcome these problems, many sensorless vector control methods for the wound induction motor have been studied. This paper presents MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor drive. In conventional MRAS method, in low frequency, stator resistance variation can result in poor performance. Therefore, to overcome several shortages of the conventional MRAS caused by parameter variation and enhance robustness of the sensor less vector control, this paper investigates a MRAS method with on-line stator resistance tuning for sensorless vector control of the wound induction motor. The validity and effectiveness of the proposed method is verified through digital simulation.

  • PDF

수치해석에 의한 고효율 BLDC 모터의 제어기 설계 및 성능평가에 관한 연구 (The Performance Evaluation and the Design of Controller for the Highly Efficient BLDC Motor using Numerical Analysis)

  • 우천희;박건식
    • 전기학회논문지P
    • /
    • 제55권2호
    • /
    • pp.62-66
    • /
    • 2006
  • This thesis focuses on the design of control schemes for highly efficient BLDC motor drive applications using drives with output capacity of 1Hp. The control system was designed and implemented on a PIC micro-controller and applied to an electric vehicle as a viable replacement to the existing a high phase induction motor that is currently being used for these low cost, small traction drive applications. This paper for the brushless drive research has shown the optimization of the drive system for improved drive design and switching techniques that can improve the entire drive system efficiency for electric vehicle both large and small traction applications using sinusoidal PWM techniques for synthesizing the AC waveforms needed to control these traction drives. In addition, Numerical simulation was conducted to evaluate the performance of designed BLDC Motor using MotorPro simulator.

A Fuzzy Predictive Sliding Mode Control for High Performance Induction Motor Position Drives

  • Bayoumi E.H.E.;Nashed M.N.F.
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.20-28
    • /
    • 2005
  • This paper presents a fuzzy predictive sliding mode control for high performance induction motor position drives. A new simplified inner-loop sliding-mode current control scheme based on a nonlinear mathematical model of an induction motor is introduced. Novel predictive fuzzy logic PI and PID controllers are used in speed and position loops, respectively. Sliding-mode current controllers and fuzzy predictive logic controllers are designed based on indirect vector control. The overall system performance is examined under different dynamic operating conditions. The performance of the drive system is robust and stable, and insensitive to parameters and operating condition variations even though non-exact system parameters are used in the implementation of the proposed controllers.

신경회로망 속도설정에 의한 유도전동기의 속도제어 (Speed Control of Induction Motor by Neural Network Speed Estimator)

  • 권양원;윤양웅;강학수;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2467-2469
    • /
    • 2000
  • In this paper, the DSP implementation of induction motor drive is presented on the viewpoint of the design and experiment. The speed estimation of control system for induction motor drive is designed on the base of neural network speed estimator. This neural network speed estimator is experimentally applied to the induction motor system. This system provides the satisfactory results.

  • PDF

A High-Performance Induction Motor Drive with 2DOF I-PD Model­Following Speed Controller

  • El-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.217-227
    • /
    • 2004
  • A robust controller that combines the merits of the feed-back, feed-forward and model-following control for induction motor drives utilizing field orientation control is designed in this paper. The proposed controller is a two-degrees-of­freedom (2DOF) integral plus proportional & rate feedback (I-PD) speed controller combined with a model-following (2DOF I-PD MFC) speed controller. A systematic mathematical procedure is derived to find the parameters of the 2DOF I-PD MFC speed controller according to certain specifications for the drive system. Initially, we start with the I-PD feed­back controller design, then we add the feed-forward controller. These two controllers combine to form the 2DOF I-PD speed controller. To realize high dynamic performance for disturbance rejection and set point tracking characterisitics, a MFC controller is designed and added to the 2DOF I-PD controller. This combination is called a 2DOF I-PD MFC speed controller. We then study the effect of the 2DOF I-PD MFC speed controller on the performance of the drive system under different operating conditions. A computer simulation is also run to demonstrate the effectiveness of the proposed controller. The results verify that the proposed 2DOF I-PD MFC controller is more accurate and more reliable in the presence of load disturbance and motor parameter variations than a 2DOF I-PD controller without a MFC. Also, the proposed controller grants rapid and accurate responses to the reference model, regardless of whether a load disturbance is imposed or the induction machine parameters vary.

유도전동기의 고성능 구동을 위한 고신뢰성 제어시스템 (A Fault-Tolerant Control System for High Performance Induction Motor Drive)

  • 김상훈;설승기;박민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1199-1202
    • /
    • 1992
  • This paper describes a fault-tolerant control system for high I performance induction motor drive. A new fault-tolerant scheme using three processor-based controllers is presented. The proposed scheme guarantees the high reliability and provides the flexibility of controllers utilization. Through the comparison of estimated reliability, it is verified that the proposed scheme gives higher reliability than TMR to the control system for induction motor drive.

  • PDF

벡터제어 교류전동기 구동의 파라메터 민감도에 관한 연구 (A Study on Parameter Sensitivity in Vector Control AC motor Drive)

  • 박민호;김영렬;원충연;김태훈;김학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.616-621
    • /
    • 1989
  • This paper describes newly developed high performance control system for vector controlled induction motor. In order to realize this system, the authors are adopted the current controlled PWM inverter with hysteresis controller. A priori knowledge of the motor parameters is need in order to implement indirect vector control on induction motor drive systems where the position of rotor flux is estimated. This paper presents some of the relevant mathematics necessary to study parameter sensitivity in induction motor servo system. Simulation results demonstrate the predicted performance.

  • PDF

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.