• 제목/요약/키워드: induction motor drive system

검색결과 449건 처리시간 0.024초

유도전동기의 강인 제어를 위한 뉴로-퍼지 설계 (Design of neuro-fuzzy for robust control of induction motor)

  • 송윤재;강두영;김형권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF

AFLC 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance Control of Induction Motor Drive with AFLC Controller)

  • 고재섭;최정식;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.216-218
    • /
    • 2006
  • The paper is proposed high performance control of induction motor drive with adaptive fuzzy logic controller(AFLC). Also, this paper is proposed speed control of induction motor using AFLC and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The proposed control algorithm is applied to induction motor drive system controlled AFLC and ANN controller. And this paper is proposed the results to verify the effectiveness of the AFLC and ANN controller.

  • PDF

Parameter Identification of an Induction Motor Drive with Magnetic Saturation for Electric Vehicle

  • Jeong, Yu-Seok;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.418-423
    • /
    • 2011
  • This paper presents a simulation model and a parameter identification scheme of an induction motor drive for electric vehicle. The induction motor in automotive applications should operate in very high efficiency and achieve the maximum-torque-per-ampere (MTPA) feature even with saturated magnetic flux under very high torque. The indirect vector control which is typically adopted in traction drive system requires precise information of motor parameters, particularly rotor time constants. This work models an induction motor considering magnetic saturation and proposes an empirical identification method using the current controller in the synchronous reference frame. The proposed method is applied to a 22kW-rated induction motor for electric vehicle.

벡터제어 유도전동기의 최대효율 운전 (Maximum Efficiency Drive of Vector-Controlled Induction Motors)

  • 윤덕용;최규하;홍순찬;백수현;이은웅
    • 전력전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF

삼상 유도전동기의 고효율 운전을 위한 SW-VVVF 시스템에 관한 연구 (SW-VVVF System for High Efficiency Drive of Induction Motor)

  • 유철로;이공희;이성룡
    • 대한전기학회논문지
    • /
    • 제38권2호
    • /
    • pp.93-99
    • /
    • 1989
  • This paper describes Sinusoidal Wave-Variable Voltage Variable Fequency (SW-VVVF) system for the high efficiency drive of a 3-phase induction motor. SW-VVVF system consists of a 3-phase 24-pulse converter and a SPWM inverter. The converter with additional 2 tap diode circuits in interphase reactor reduces harmonics in input current. The SPWM inverter consists of an improved PLL system and a V/F controller, which reduces harmonics in output current and performs a high efficiency algorithm by maintaining a constant slip frequency and compensating for the velocity variation of the induction motor with the change of load. Therefore, this system reduces harmonics in input and output currents, and also can drive an induction motor with high efficiency in an economical way. We have proved its utility through experiment.

  • PDF

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Vector Control of Induction Motors using Optimal Efficiency Control

  • Kim, Sang-uk;Chi, Jin-ho;Kim, Young-seok
    • Journal of Power Electronics
    • /
    • 제2권1호
    • /
    • pp.67-75
    • /
    • 2002
  • This paper presents the control algorithm for maximum efficiency drives of an induction motor system with the high dynamic performance. This system uses a simple model of the induction motor that includes equations of the iron losses. The model, which only requires the parameters of the induction motor, is referred to a field-oriented frame. The minimum point of the input power can be obtained at the steady state condition. The proposed optimal efficiency control algorithm calculates the reference torque and flux currents for the vector control of the induction motors. A 32 bit floating point TMS320C32 DSP chip implements the drive system with the efficiency optimization controller. The results show the effectiveness of the control strategy Proposed for the induction motor drive.

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

유도전동기구동계(系)의 불안정현상에 관한 이론적고찰 (A Theoretical Investigation on the Instability Phenomena of Induction Motor Drive System)

  • 백수현;김필수;송성준;김용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 1990
  • In this paper the instability analysis of Inverter fed Induction motor drive system is performed by calculate the eigen value of the linearised equation which describe the behavior of the Induction motor. Inverter fed Induction motor drive system may become unstable at low speeds(frequencies) even though balanced, sinusoidal voltage are applied. Effect for the change of machine parameter and Inverter delay time are simulated by digital computer.

  • PDF

PLL 방식을 이용한 유도전동식 고효율 운전장치의 간략화에 관한 연구 (Simplified High Efficiency Drive System of Induction Motor using PLL Technique)

  • 유철로;이공희;이성룡
    • 대한전기학회논문지
    • /
    • 제35권9호
    • /
    • pp.403-408
    • /
    • 1986
  • In this paper, the method to improve the efficiency of an induction motor at light load is discussed. Efficiency of induction motor can be very substantially improved by keeping the slip frequency as constant. Therefore, to simplify the control loop, algorithm which maintain constant slip frequency and control the input voltage is adopted. Simplified high efficiency drive of induction motor using PLL technique is suggested. In order to verify the validity of this system, the test results are compared with those obtained by optimal slip drive system and then we found closer to the optimal efficiency. For example its efficiency is improved from 18[%] to 42[%] at a few fraction of the full load (20[%]).

  • PDF