• Title/Summary/Keyword: induced protein

Search Result 6,960, Processing Time 0.033 seconds

Effects of Different Types of Dietary Fat on Muscle Atrophy According to Muscle Fiber Types and PPAR${\delta}$ Expression in Hindlimb-Immobilized Rats (지방의 종류가 다른 식이의 섭취가 하지고정 흰 쥐의 근 섬유별 근 위축과 PPAR${\delta}$ 활성에 미치는 영향)

  • Lee, Ho-Uk;Park, Mi-Na;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.5
    • /
    • pp.355-365
    • /
    • 2011
  • This study investigated how dietary fat affects muscle atrophy and lipid metabolism in various muscles during hindlimb immobilization in rats. Twenty-four male Sprague?Dawley rats had their left hindlimb immobilized and were divided into four groups by dietary fat content and composition. The contralateral hindlimb (control) was compared with the immobilized limb in all dietary groups. Rats (n = 6/group) were fed a 4% corn oil diet (CO), 2.6% corn oil + 1.4% fish oil diet (FO), 30% corn oil diet (HCO), or a 30% beef tallow diet (HBT)after their hind limbs were immobilized for 10 days. Data were collected for the gastrocnemius, plantaris and soleus muscles. Muscle atrophy was induced significantly after 10 days of hindlimb immobilization, resulting in significantly decreased muscle mass and total muscle protein content. The protein levels of peroxisome proliferator activated receptor ${\delta}$ (PPAR${\delta}$) in the plantaris, gastrocnemius, and soleus increased following hindlimb immobilization irrespective of dietary fat intake. Interestingly, the PPAR${\delta}$ mRNA level in the plantaris decreased significantly in all groups and that in the FO group was lower than that in the other groups. The soleus PPAR${\delta}$ mRNA level decreased significantly following hindlimb immobilization in the FO group only. Muscle carnitine palmitoyl transferase 1 (mCPT1) mRNA level was not affected by hindlimb immobilization. However, the mCPT1 mRNA level in the FO group was significantly lower in the plantaris but higher in the soleus than that in the other groups. The pyruvate dehydrogenase kinase 4 (PDK4) mRNA level in the plantaris decreased significantly, whereas that in the soleus increased significantly following hindlimb immobilization. The plantaris, but not soleus, PDK4 mRNA level was significantly higher in the FO group than that in the CO group. The increased PPAR${\delta}$ protein level following hindlimb immobilization may have suppressed triglyceride accumulation in muscles and different types of dietary fat may have differentially affected muscle atrophy according to muscle type. Our results suggest that ${\omega}$-3 polyunsaturated fatty acids may suppress muscle atrophy and lipid accumulation by positively affecting the expression level and activity of PPAR${\delta}$ and PPAR${\delta}$-related enzymes, which are supposed to play an important role in muscle lipid metabolism.

Anti-inflammatory effect of Sinhyowoldo-san Extract with regard to Pro-inflammatory Mediators in PMA plus A23187-induced Human Mast Cells (인간 비만세포에서 PMA와 A23187에 의해 유도된 전염증 매개체에 대한 신효월도산 추출물의 항염증 효과)

  • Wi, Gyeong;Yang, Da-Wun;Kang, Ok-Hwa;Kim, Sung-Bae;Mun, Su-Hyun;Seo, Yun-Soo;Kang, Da-Hye;Lim, Jae-Soo;Kim, Ma-Ryong;Kwak, Nam-Won;Kong, Ryong;Kwon, Dong-Yeul
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.117-123
    • /
    • 2014
  • Objectives : Sinhyowoldo-san (SHWDS) is said to be a traditional medicine used for shigellosis, abdominal pain, diarrhea. But mechanism of SHWDS mediated-modulation of immune function is not sufficiently understood. To ascertain the molecular mechanisms of SHWDS 70% EtOH extract on pharmacological and biochemical actions in inflammation, we researched the effect of pro-inflammatory mediators in phorbol-12-myristate-13-acetate (PMA)+ A23187-activated human mast cell line (HMC-1). Methods : In the present research, cell viability was measured by MTS assay. pro-inflammatory cytokine production was measured by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to analyze the activation of mitogen-activated protein kinases (MAPKs), nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). The investigation focused on whether SHWDS inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8), MAPKs and $NF-{\kappa}B$ in PMA+A23187-activated HMC-1 cells. Results : SHWDS has no cytotoxicity at measured concentration (50, 100, and $250{\mu}g/ml$). SHWDS ($250{\mu}g/ml$) inhibits pro-inflammatory cytokine expression in PMA+ A23187-activated HMC-1 cells. Moreover, SHWDS inhibited cyclooxygenase (COX)-2 expression. In activated HMC-1 cells, SHWDS suppressed phosphorylation of extracellular signal-regulated kinase (ERK 1/2) and c-jun N-terminal Kinase (JNK 1/2). Then, SHWDS suppressed activation of nuclear factor $NF-{\kappa}B$ in nuclear, degradation of IkB ${\alpha}$ in cytoplasm. Conclusions : We propose that SHWDS has an anti-inflammatory therapeutic potential, which may result from inhibition of ERK 1/2, JNK 1/2 phosphorylation and $NF-{\kappa}B$ activation, thereby decreasing the expression of pro-inflammatory genes.

Effect of SeaR gene on virginiamycins production in Streptomyces virginiae (희소방선균 SeaR 유전자가 Streptomyces virginiae의 virginiamycins 생산에 미치는 영향)

  • Ryu, Jae-Ki;Kim, Hyun-Kyung;Kim, Byung-Won;Kim, Dong-Chan;Lee, Hyeong-Seon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.256-262
    • /
    • 2015
  • In order to study the effect of the receptor protein (SeaR), which is isolated from Saccharopolyspora erythraea, we introduced the SeaR gene to Streptomyces virginiae as host strains. An effective transformation procedure for S. virginiae was established based on transconjugation by Escherichia coli ET12567/pUZ8002 with a ${\varphi}C31$-derived integration vector, pSET152, which contained int, oriT, attP, and $ermEp^{\ast}$ (erythromycin promotor). Therefore, the pEV615 was introduced into S. virginiae by conjugation and integrated at the attB locus in the chromosome of the recipients by the ${\varphi}C31$ integrase (int) function. Transformants of S. virginiae containing the SeaR gene were confirmed by PCR and transcriptional expression of the SeaR gene in the transformants was analyzed by RT-PCR, respectively. And, we examined the production time of virginiamycins in the culture media of both the transformants and the wild type. The production time of virginiamycins in the wild type and transformants was the same. When 100 ng/ml of synthetic $VB-C_6$ was added to the state of 6 or 8 hour cultivation of wild type and transformants, respectively, the virginiamycins production was induced, meaning that the virginiamycins production in the wild type was detected 2 h early than transformants. From these results, SeaR expression was also affected to virginiamycins production in transformants derived from S. virginiae. In this study, we showed that the SeaR protein worked as a repressor in transformants.

Anti-inflammatory Activity of Antimicrobial Peptide Zophobacin 1 Derived from the Zophobas atratus (아메리카왕거저리 유래 항균 펩타이드 조포바신 1의 항염증활성)

  • Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Seo, Minchul;Kim, Mi-Ae;Lee, Hwa Jeong;Baek, Minhee;Kim, Seong Hyun;Hwang, Jae Sam
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.804-812
    • /
    • 2020
  • The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae) has been used as a protein source for small pets and mammals. Recently, it was temporarily registered in the list of the Food Code. We previously performed an in silico analysis of the Zophobas atratus transcriptome to identify putative antimicrobial peptides and identified several antimicrobial peptide candidates. Among them, we assessed the antimicrobial and anti-inflammatory activities of zophobacin 1 that was selected bio-informatically based on its physicochemical properties against microorganisms and mouse macrophage Raw264.7 cells. Zophobacin 1 showed antimicrobial activities against microorganisms without inducing hemolysis and decreased the nitric oxide production of the lipopolysaccharide-induced Raw264.7 cells. Moreover, ELISA and Western blot analysis revealed that zophobacin 1 reduced expression levels of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We also investigated expression of pro-inflammatory cytokines (interleukin-6 and interleukin-1β) production through quantitative real time-PCR and ELISA. Zophobacin 1 markedly reduced the expression level of cytokines through the regulation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling. We confirmed that zophobacin 1 bound to bacterial cell membranes via a specific interaction with lipopolysaccharides. These data suggest that zophobacin 1 could be promising molecules for development as antimicrobial and anti-inflammatory therapeutic agents.

Immunohistochemical localization of several protein changes in periodontal ligament during tooth eruption and interdental separation of rats (흰쥐의 치아 맹출과 치간 이개 과정에서 수종의 치주인대 단백질 발현의 변화에 관한 면역 조직화학적 연구)

  • Lim, Sung-Hoon;Park, Hyung-Soo;Yoon, Young-Jooh;Kim, Kwang-Won;Kim, Heung-Joong;Jeong, Moon-Jin;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.1 s.102
    • /
    • pp.71-81
    • /
    • 2004
  • In this study, we attempt to investigate the mechanisms by which PDL cells regulate osteoclast formation and also tc know whether PDL retained their characteristic phenotype during tooth eruption and interdental separation. Rats were prepared at developmental days 21 (pre-root formation), 27(toot development), 34(advanced root formation/eruption) and at later times(adult rats). To induce severe resorption state of alveolar bone and tooth root, interdental separation with brass wire was performed between the lower first and second molars for 2 weeks in adult rats. Rat mandibles were demineralized and embedded in paraffin, and horizontal and frontal section were prepared for immuno-histochemical analysis using PDL-specific protein 22 (PDLs22), receptor activator of NFKB ligand (RANKL) and osteoprotegerin (OPG) antibodies. 1. Root formation and eruption stage of tooth development. 1) PDLs22 immunolocalization was observed in tooth follicle/PDL cells and osteoblasts throught out the root formation and eruption stages of tooth development. 2) RANKL expression became stronger at eruption stage than root formation stage of tooth development. 3) Strong expression of OPG was detected in follice/PDL cells of toot formation stage but it was decreased with tooth eruption. 2. Interdental separation between lower first and second molar 1) Comparared to normal animal, multinucleated osteoclasts and odontoclasts were markedly induced in the alveolar bone and tooth root with PDL remodeling in hematoxylin-eosin section. 2) PDLs22 expression was decreased with interdental separation. 3) RANKL expression was Increased with interdental separation in PDL fibroblasts, osteoblasts, odontoclasts and it lacunae, resorting dentin, cementum and bone matrix. 4) OPG expression was slightly decreased in the PDL cells adjacent to the alveolar bone and root surface with interdental separation. These results suggested that during tooth eruption and tooth movement, RANKL and OPG in the periodontal tissues are important determinants regulating balanced alveolar bone and tooth root resorption. And it is also suggested that PDL cells retained their characteristic phenotype during tooth eruption and interdental separation except for the short period of PDL remodeling.

Effects of Low Level of Levan Feeding on Serum Lipids, Adiposity and UCP Expression in Rats (저농도 레반 공급이 혈중 지질 및 체지방 형성과 UCP 발현에 미치는 영향)

  • 강순아;홍경희;장기효;김소혜;조여원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.788-795
    • /
    • 2002
  • This study described the effect of levan (9-2,6-linked fructose polymer) feeding on serum lipids, adiposity and uncoupling protein (UCP) expression in growing rats. Levan was synthesized from sucrose using bacterial levansucrase. UCP is a mitochondrial protein that uncouples the respiratory chain from oxidative Phosphorylation and generates heat instead of ATP, thereby increase energy expenditure. We observed that 3% or 5% levan containing diet reduced serum triglyceride levels, visceral and peritoneal fat mass and induced the UCP expression in rats fed high fat diet in previous study. To determine whether the intake of low level of levan may have the hypolipidemic and anti-obesity effect, 4 wk old Sprague Dawley male rats were fed AIN-76A diet for 6 wk, and sub-sequently fed 1% or 2% levan solution for further 5 wk. Intake of 1% levan in liquid form reduced serum triglyceride and serum total cholesterol levels to 50% and 66% of control group, respectively. Although epididymal and peritoneal fat masses were not affected by levan feeding, visceral fat mass was lower in 1% levan group compared to control group. The expression of UCP2 mRNA in brown adipose tissue, skeletal muscle and hypothalamus and UCP3 mRNA in skeletal muscle were not changed by levan feeding, while the UCP2 mRNA in white adipose tissue was up-regulated by levan feeding. In conclusions, intake of low level of levan solution reduced serum triglyceride and total cholesterol, restrained the visceral fat accumulation and increased UCP expression in white adipose tissue in rats. This study suggests that hypolipidemic and anti-obesity effect of levan attributed to anti-lipogenesis and inefficeint energy utilization by up-regulation of UCPs.

A Novel Method to Study the Effects of Cyclosporine on Gingival Overgrowth in Children (소아에서 치은 과증식에 대한 cyclosporine의 효과를 연구하는 새로운 방법)

  • Han, Keumah;Kim, Jongsoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.45 no.3
    • /
    • pp.271-279
    • /
    • 2018
  • Previous studies to elucidate the etiology of cyclosporine(Cs)-induced gingival overgrowth in children have not completely excluded all factors that may cause differences among individuals. This study examined the effect of cyclosporine on the metabolism of type 1 collagen(CoL-I) in experimental models that controlled the effects of biological variations on individuals. Five 5-week-old male Sprague-Dawley rats were administered Cs by gastric feeding for 6 weeks. Gingival specimens were harvested from the mandibular posterior area before beginning Cs administration and at 2, 4, and 6 weeks thereafter. Gingival fibroblasts were cultured from all the 20 biopsies collected from the gingiva. Half of the fibroblasts collected prior to the Cs administration were designated as Control. The other half of the fibroblasts were treated with Cs in vitro and called in vitro test group(Tt). The fibroblasts collected 2, 4, and 6 weeks after the Cs administration were called in vivo test groups : T2, T4, T6, respectively. Immunofluorescence microscopy was used to detect CoL-I in all the fibroblasts. CoL-I was analyzed at both the gene and protein expression levels by real-time polymerase chain reaction and western blotting. Changes in CoL-I before and after Cs treatment were evaluated from the gingiva of each rat. There was no significant difference in gene expression of CoL-I in the control and test groups. CoL-I protein expression levels of fibroblasts increased in in vitro Cs treatment for each individual, and also increased in in vivo Cs treatment. In this study, the experimental method that control biological variations that can occur due to differences among individuals was useful. Subsequent studies on other factors besides CoL-I and in-depth studies in humans are needed.

Inhibitory Effects of Spinach, Cabbage, and Onion Extracts on Growth of Cancer Cells (시금치, 양배추, 양파 추출물의 암세포 증식 억제 효과)

  • Lee, Hae-Nim;Shin, Seong-Ah;Choo, Gang-Sik;Kim, Hyeong-Jin;Park, Young-Seok;Kim, Sang-Ki;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.671-679
    • /
    • 2016
  • Extracts from spinach, cabbage, and onion are known to possess various instructive characteristics, including antioxidant and anti-inflammation activities. Spinach, cabbage, and onion are consumed worldwide and represent important sources of dietary phytochemicals with proven antioxidant properties, such as flavonoids and phenolic acids. Food-derived flavonoids and phenolic compounds are expected to be promising drugs for cancer. In the present study, we investigated the effects of methanol extracts of spinach, cabbage, and onion on cell proliferation and apoptosis in human gastric and breast cancer cells. Proliferation rates of AGS, MDA-MB-231, and SK-BR-3 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanol extracts of spinach, cabbage, and onion inhibited proliferation of cancer cells in a dose-dependent manner. 4',6-Diamidino-2-phenylindole (DAPI) staining revealed that chromatin condensation significantly increased compared with the control. In the results of MTT assay and DAPI staining, onion extract was the most effective in inhibiting cancer cell proliferation and apoptosis. To assess changes in protein expression level by onion extract, we identified Bax (pro-apoptotic), Bcl-2 (anti-apoptotic), and poly(ADP-ribose) polymerase (PARP) protein by western blot analysis. The expression of Bax and cleaved-PARP increased, whereas expression of Bcl-2 was decreased compared with the control. These results suggest that spinach, cabbage, and onion extracts suppressed growth of human gastric cancer AGS, human breast cancer MDA-MB-231, and SK-BR-3 cells through induction of apoptosis. Among the extracts, onion extract had stronger anti-cancer and apoptosis induction effects than spinach and cabbage extracts. Further, onion extract more effectively induced apoptosis of human gastric cancer cells than human breast cancer cells. Therefore, further studies are needed to determine the anti-cancer effects of onion extracts in vivo. Onion extract can be developed as a chemopreventive or therapeutic agent for gastric cancer.

Increases in Doxorubicin Sensitivity and Radioiodide Uptake by Transfecting shMDR and Sodium/Iodide Symporter Gene in Cancer Cells Expressing Multidrug Resistance (다약제내성 암세포에서 shMDR과 Sodium/Iodide Symporter 유전자의 이입에 의한 Doxorubicin 감수성과 방사성옥소 섭취의 증가)

  • Ahn, Sohn-Joo;Lee, Yong-Jin;Lee, You-La;Choi, Chang-Ik;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, In-Kyu;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2007
  • Purpose: Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. Material and Methods: At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. Results: In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Conclusion: Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and radioiodine after cotransfection shMDR and NIS gene can be used to overcome MDR.

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw264.7 cell에서 Rhododendron mucronulatum Turcz. Flower으로부터 분리한 myricetin에 의한 염증 억제효과)

  • Choi, Moo-Young;Hong, Shin-Hyup;Cho, Jun-Hyo;Park, Hye-Jin;Jo, Jae-Bum;Lee, Jae-Eun;Kim, Dong-Hee;Kim, Byung-Oh;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1245-1252
    • /
    • 2016
  • As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.