• Title/Summary/Keyword: induced polarization method

Search Result 78, Processing Time 0.025 seconds

Three-Dimensional Standard Curves in Induced Polarization Method (IP법(法)의 3차원(次元) 표준곡선(標準曲線))

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.16 no.4
    • /
    • pp.269-276
    • /
    • 1983
  • This paper describes three-dimensional (3-D) standard curves for single prismatic buried bodies in induced polarization (IP) method. Dipole-dipole IP responses for the bodies are calculated by the numerical modeling technique using an integral equation solution. The pattern of IP responses for conductive targets depends on the ratio of the width of body to the depth extent. The IP response of a body of six units in strike length approximates that of a two-dimensional body. In addition, if the strike length is long enough, a layered-earth interpretation is applicable for a body much longer than four units in width. Moving an IP line away from the center of a body alon gstrike produces an effect similar to that of increasing the depth. Moving the location of body along line has little effect to the pattern of IP responses.

  • PDF

Study on the Miniaturization Method of a 3-dimensional Linear Polarization Microstrip Patch Antenna using the Irises (Iris 부착 3차원 선형편파 마이크로스트립 패치 안테나의 소형화에 관한 연구)

  • Jang, Yon-Jeong;Seo, Jeong-Sik;Jo, Joung-Hwan;Woo, Jong-Myung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.450-453
    • /
    • 2003
  • In this paper, the miniaturization of linear polarization microstrip patch antenna is studied by attached Irises near the square linear polarization microstrip patch antenna which are induced the increase of current path. Microstrip patch antenna having the Irises is designed and fabricated at the resonant frequency of 1.575 GHz. The result is like that the resonant length of patch is reduced 41.5 mm which correspond to 50.9 % of that of plane type(81.5mm). The return loss is -28.5 dBd and -10 dB bandwidth is 103 MHz( 6.5 %). And as the radiation pattern is broad through the size reduction of patch, the gain is 5.9 dBd and -3 dB beamwidth of E-plane is $111.9^{\circ}$.

  • PDF

Effects of Asymmetric Distribution of Charged Defects on the Hysteresis Curves of Ferroelectric Capacitors

  • Lee Kang-Woon;Kim Yong-Il;Lee Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.219-226
    • /
    • 2005
  • When a ferroelectric film has an inhomogeneous distribution of charged defects, a voltage shift in the polarization curve is induced by the internal field generated in the film. The direction and the magnitude of voltage shift in the P-V hysteresis curves obtained by the Sawyer-Tower method are different from those obtained by the virtual ground method. In this study, the asymmetric behavior in the P-V hysteresis curves of inhomogeneous ferroelectric films was investigated with a physical model and the polarization curves obtained by the Sawyer-Tower and the virtual ground methods are compared.

  • PDF

Spectral Inversion of Time-domain Induced Polarization Data (시간영역 유도분극 자료의 Cole-Cole 역산)

  • Kim, Yeon-Jung;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.171-179
    • /
    • 2021
  • We outline a process for estimating Cole-Cole parameters from time-domain induced polarization (IP) data. The IP transients are all inverted to 2D Cole-Cole earth models that include resistivity, chargeability, relaxation time, and the frequency exponent. Our inversion algorithm consists of two stages. We first convert the measured voltage decay curves into time series of current-on time apparent resistivity to circumvent the negative chargeability problem. As a first step, a 4D inversion recovers the resistivity model at each time channel that increases monotonically with time. The desired intrinsic Cole-Cole parameters are then recovered by inverting the resistivity time series of each inversion block. In the second step, the Cole-Cole parameters can be estimated readily by setting the initial model close to the true value through a grid search method. Finally, through inversion procedures applied to synthetic data sets, we demonstrate that our algorithm can image the Cole-Cole earth models effectively.

Inversion of Time-domain Induced Polarization Data by Inverse Mapping (역 사상법에 의한 시간영역 유도분극 자료의 역산)

  • Cho, In-Ky;Kim, Yeon-Jung
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.149-157
    • /
    • 2021
  • Given that induced polarization (IP) and direct current (DC) resistivity surveys are similar in terms of data acquisition, most DC resistivity systems are equipped with a time-domain IP data acquisition function. In addition, the time-domain IP data include the DC resistivity values. As such, IP and DC resistivity data are intimately linked, and the inversion of IP data is a two-step process based on DC resistivity inversions. Nevertheless, IP surveys are rarely applied, in contrast to DC resistivity surveys, as proper inversion software is unavailable. In this study, through numerical modeling and inversion experiments, we analyze the problems with the conventional inverse mapping technique used to invert time-domain IP data. Furthermore, we propose a modified inverse mapping technique that can effectively suppress inversion artifacts. The performance of the technique is confirmed through inversions applied to synthetic IP data.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

A Study on High Voltage and High Current Measurement using Laser (레이저에 의한 고전압 및 대전류 측정에 관한 연구)

  • Gang, Hyeong-Bu;Jeong, Un-Gwan;Jang, Yong-Mu;Choe, Seung-Gil;Sim, Jae-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.769-770
    • /
    • 1988
  • The Pockel's effect is well know as a voltage measurement method. This method is applicable to high voltage measurement equipments. We observe the Faraday rotation of the polarization plane in the current-induced magnetic field.

  • PDF

Forward probing utilizing electrical resistivity and induced polarization for predicting mixed-ground ahead of TBM tunnel face (전기비저항과 유도분극을 활용한 TBM 터널 굴착면 전방 복합지반 예측 기법)

  • Ryu, Jinwoo;Park, Jinho;Lee, Seong-Won;Lee, In-Mo;Kim, Byung-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.55-72
    • /
    • 2018
  • A method that can predict the mixed-ground condition ahead of a TBM tunnel face during tunnel construction utilizing electrical resistivity and induced polarization (IP) was proposed in this study. Effect of TBM advancement approaching the mixed-ground condition (composed of soil layer overlying rock layer) when currently running through soil zone on the electrical resistivity and IP measuring was assessed with laboratory-scale experiments. The resistivity and IP values were measured using four electrodes, by installing two electrodes on the tunnel face (at the cutterhead), and the other two electrodes on the segment lining. The test results showed that both of the measured resistivity and IP values were kept increasing as the TBM is approaching the soil-rock mixed-ground. Also, to get the more reliable results for predicting the mixed-ground condition, it was recommended that the measurement is made at the tunnel face utilizing 4-electrodes installed at the cutterhead as well as it is made utilizing the 2-electrodes installed at the segment lining along with the 2-electrodes installed on the tunnel face (at the cutterhead) so that two measured results are compared each other.

Application of Spectral Induced Polarization Method for Skarn Metallic Deposits Exploration (스카른 금속광상 탐사를 위한 광대역 유도분극법 적용성)

  • Park, Samgyu;Shin, Seung Wook;Son, Jeong-Sul;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.212-219
    • /
    • 2016
  • The development of more advanced geophysical exploration techniques is necessary because the orebodies as yet discovered are increasingly changing in characteristics from shallow/high-grade to deep/low-grade. In this work, laboratory measurement of physical properties of rock samples and a field survey and interpretation of spectral induced polarization (SIP) have been conducted in a skarn metallic deposit, Gagok mine. The purpose of this study is that the applicability of SIP in the exploration of skarn metallic deposits is verified by the comprehensive interpretation between SIP characteristics of rocks obtained from the laboratory measurements and inverted survey results from the field data. In order to understand the SIP characteristics of each lithology, the data of eighty nine rock samples utilized in the previous studies were revaluated. The field survey was carried out using frequency of 0.25 Hz along a survey line designed for intersecting lithological boundaries and evaluating mineralized zones. The mineralized rocks were more conductive (low-resistivity) and capacitive (high-chargeability or strong-phase) than other rocks. Thus, SIP can be one of the very useful tools for the mineral exploration of the skarn deposits.

Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization (다중목적함수 최적화에 기초한 광대역 유도분극 변수 예측 적용성 분석)

  • Kim, Bitnarae;Jeong, Ju Yeon;Min, Baehyun;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • Among induced polarization (IP) methods, spectral IP (SIP) uses alternating current as a transmission source to measure amplitudes and phase of complex electrical resistivity at each source frequency, which disperse with respect to source frequencies. The frequency dependence, which can be explained by a relaxation model such as Cole-Cole model or equivalent models, is analyzed to estimate SIP parameters from dispersion curves of complex resistivity employing multi-objective optimization (MOO). The estimation uses a generic algorithm to optimize two objective functions minimizing data misfits of amplitude and phase based on Cole-Cole model, which is most widely used to explain IP relaxation effects. The MOO-based estimation properly recovered Cole-Cole model parameters for synthetic examples but hardly fitted for the real laboratory measures ones, which have relatively smaller values of phases (less than about 10 mrad). Discrepancies between scales for data misfits of amplitude and phase, used as parameters of MOO method, and it is in necessity to employ other methods such as machine learning, which can deal with the discrepancies, to estimate SIP parameters from dispersion curves of complex resistivity.