• Title/Summary/Keyword: induced drag

Search Result 166, Processing Time 0.027 seconds

Immersed Boundary Method for Flow Induced by Transverse Oscillation of a Circular Cylinder in a Free-Stream (가상경계법을 사용한 횡단 진동하는 실린더 주위의 유동 해석)

  • Kim, Jeong-Hu;Yoon, Hyun-Sik;Tuan H.A.;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.322-330
    • /
    • 2006
  • Numerical calculations are carried out for flow past a circular cylinder forced oscillating normal to the free-stream flow at a fixed Reynolds number equal to 185. The cylinder oscillation frequency ranged from 0.8 to 1.2 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 20% of the cylinder diameter. IBM (Immersed Boundary Method) with direct momentum forcing was adopted to handle both of a stationary and an oscillating cylinder Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. The instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios showed the synchronized wakes pattern in the lock-in region and vortex switching phenomenon at higher frequency ratio than the critical frequency ratio.

Cavitating Flow Characteristics around a 2-Dimensional Hydrofoil Section (2차원 날개 단면 주위의 캐비테이팅 유동 특성 연구)

  • Choi, Jung-Eun;Chung, Seok-Ho;Lee, Dong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.74-82
    • /
    • 2007
  • Recently, the erosion due to cavitation frequently occurs on a horn-type rudder of a high-speed large container carrier. It is necessary to understand the flow characteristics around a rudder in fully wetted and cavitating flow condition, and the process of generation and collapse of cavitation for a rudder design to minimize the cavity-induced erosion. The flow characteristics around a two-dimensional hydrofoil(NACA66) are investigated through the computational method utilizing a viscous flow theory applied to a cavitation model. The computational results from the viscous flow theory are verified by the comparison with the experimental results, and are compared with those from the potential flow theory. The effects of angle of attack, Reynolds number, cavitation number, and thickness ratio on the cavitating flow are also investigated.

WALL EFFECTS ON LAMINAR FLOW OVER A CUBE (정육면체 주위 층류 유동에 근처 벽면이 미치는 영향)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2011
  • Laminar flow over a cube near a plane wall is numerically investigated in order to understand the effects of the cube-wall gap on the flow characteristics as well as the drag and lift coefficients. The main focus is placed on the three-dimensional vortical structures and its relation to the lift force applied on the cube. Numerical simulations are performed for the Reynolds numbers between 100 and 300, covering several different flow regimes. Without a wall nearby, the flow at Re=100 is planar symmetric with no vortical structure in the wake. However, when the wall is located close to the cube, a pair of streamwise vortices is induced behind the cube. At Re=250, the wall strengthens the existing streamwise vortices and elongates them in the streamwise direction. As a result, the lift coefficients at Re=100 and 250 increase as the cube-wall gap decreases. On the other hand, without a wall, vortex shedding takes place at Re=300 in the form of a hairpin vortex whose strength changes in time. The head of hairpin vortex or loop vortex, which is closely related to the lift force, seems to disappear due to the nearby wall. Therefore, unlike at Re=100 and 250, the lift coefficient tends to decrease more or less as the cube approaches the wall.

Performance Analysis of Autorotation(2) : Performance of High Speed Autorotaion (자동회전의 성능해석(2) : 고속 자동회전의 성능)

  • Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • Performance variation of autorotating rotor was investigated. The shaft angle of the rotor is reduced while the flight velocity is increased. The BO-105 helicopter rotor blade was replaced by untwisted NACA 0012 airfoil and the rotor was simulated by using Transient Simulation Method(TSM) to judge the autorotation region for the variables. To simulate the compressibility effect at high speed flight, two-dimensional aerodynamic data was analyzed by compressible Navier-Stokes solver and Pitt/Peters inflow theory was adopted to simulate the induced velocity field. Thrust and lift coefficients, lift to drag ratio variations were investigated, also the lift and power were compared to those of BO-105 helicopter. Sharing lift and power between the autorotating rotor and wing was considered when the compound aircraft concept is introduced.

Study of Anti-Fading Phenomena during Automotive Braking (자동차 제동시 나타나는 Anti-Fading현상에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • Two different friction materials (organic and low-metallic pads) for automotive brakes were studied to investigate the anti-fading phenomena during stop. The anti-fading phenomena were pronounced more in the case of using low metallic friction materials than organic friction materials. The main cause of the anti-fading phenomena was the high dependence of friction coefficient on a sliding speed. The anti-fading was prominent when the initial brake temperature was high in the case of low-metallic friction materials due to the strong stick-slip event at high temperature. On the other hand, the anti-fading was not severe in organic friction materials and the effect was reduced at high braking temperature due to the thermal decomposition of organic friction materials. The strong stickslip phenomena of low metallic friction materials at high temperature induced high torque oscillations during drag test. During this experiment two different braking control modes (pressure controlled and torque controlled modes) were compared. The type of the control mode used for brake test significantly affected the friction characteristics.

Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow (유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석)

  • Lee, Min-Hyung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X (차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구)

  • Lee, Yeong-Bin;Rho, Joo-Hyun;Kwak, Min-Ho;Lee, Jae-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF

Effect of Domain Size on Flow Characteristics in Simulating Periodic Obstacle Flow (주기적인 경계조건을 사용하는 수치모사에서 계산영역 크기의 영향)

  • Choi, Choon-Bum;Jang, Yong-Jun;Kim, Jin-Ho;Han, Seok-Youn;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.349-357
    • /
    • 2009
  • Effect of computational domain size in simulating of periodic obstacle flow has been investigated for the flow past tube banks. Reynolds number, defined by freestream velocity ($U_{\infty}$) and cylinder diameter (d), was fixed as 200, and center-to-center distance (P) as 1.5d. In-line square array and staggered square array were considered. Drag coefficient, lift coefficient and Strouhal number were calculated depending on domain size. Circular cylinders were implemented on a Cartesian grid system by using an immersed boundary method. Boundary condition is periodic in both streamwise and lateral directions. Previous studies in literature often use a square domain with a side length of P, which contains only one cylinder. However, this study reveals that the domain size is improper. Especially, RMS values of flow-induced forces are most sensitive to the domain size.

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Numerical Analysis on the Aerodynamic Characteristics of Thin Airfoil with Flapping and Pitching Motion (플래핑 운동 및 키놀이 운동을 하는 얇은 에어포일의 공력특성에 대한 수치 해석)

  • Kim, Woo-Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • In this study, lumped-vortex element method and thin airfoil theory were used to analyze aerodynamic characteristics of airfoils with relative motion that had camber lines of NACA $44{\times}{\times}$ airfoil in 2-dimensional unsteady incompressible potential flow. Velocity disturbance due to airfoil was calculated by lumped-vortex element model and force distribution on airfoil by unsteady Bernoulli's equation. Variables in relative motion were considered the period p, the amplitude of flapping $A_f$ and pitching $A_p$, and the phase difference between flapping and pitching ${\phi}_p$ and the angle of attack ${\alpha}$. Due to movement of an airfoil, dag was induced in 2-dimensional unsteady incompressible potential flow. The numerical results show that the aerodynamic characteristics of the airfoil with flapping and pitching at the same time are illustrated. Especially the mean lift coefficient became smaller, but drag coefficient became larger.