• Title/Summary/Keyword: indoor ventilation performance

Search Result 175, Processing Time 0.028 seconds

A Study on the Diffusion and Removal of Airborne Microorganism Pollution in Multistoried Apartment by the Multi-Zone Simulation (멀티존 시뮬레이션에 의한 공동주택의 미생물 오염원 확산과 제거에 관한 연구)

  • Hong, Jin-Kwan;Choi, Sang-Gon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • The purpose of this study is to evaluate the efficacy of multizone simulation that enables to grasp of details about microbial contaminant problem in an multistoried apartment. We used actual indoor test data to figure up microbial contaminant level as initial value for the multizone simulation and estimated the various effects of indoor occupant infected with germs such as bacteria and fungus and the performance of air sterilization by using multizone simulation in substitute for infeasible experimental approach. The results show that natural ventilation make ourselves generally useful for removing indoor microbial contaminants. The results also show that the performance of air sterilization reach the maximum in the case of using mechanical ventilation and UVGI air sterilizer. The conclusion is that this multizone simulation is useful tool for actual design method for immune building systems.

An Evaluation on Energy Recovery Performance of the Ventilation System in Multi-Residential Building by Field Measurement (실험을 통한 공동주택 환기시스템의 실제 운전 시 전열교환성능 검토)

  • Choi, Younhee;Song, Doosam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-73
    • /
    • 2017
  • Recently, energy recovery ventilators (ERVs) have been installed for energy saving in many multi-residential buildings in Korea. The performance of the heat exchanger of an ERV is analyzed in this study under specific indoor and outdoor conditions in a test-cell measurement. However, the performance of the heat exchanger varies according to the indoor and outdoor condition. In this study, the performance of energy recovery of the ventilation system was therefore analyzed in actual weather conditions using field measurement. Experiments were conducted under winter conditions in a multi-residential building for 20 days. Based on the measurement results, the characteristics of sensible heat and latent heat exchange rates were analyzed.

An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer (제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가)

  • Yu, Jung yeon;Cho, Dong woo;Kim, Kee Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

A Sensitivity Analysis of Parameters Affecting Indoor Air Quality Related to TVOC and HCHO Reduction

  • Kang, Hae Jin;Kim, Mi Yeon;Rhee, Eon Ku
    • Architectural research
    • /
    • v.14 no.3
    • /
    • pp.93-98
    • /
    • 2012
  • The objective of the study is to analyze the relative performance of factors affecting indoor air quality in multi-residential buildings in Korea. A study of the factors affecting indoor air quality is essential for establishing indoor air quality management strategies effectively. To observe the indoor air quality response following a modification of a given parameter, a sensitivity analysis was performed. The factors examined for the analysis include; wall/ceiling paper, adhesive for wall/ceiling paper, floor material, adhesive for floor material, and ventilation rate. The Experimental Design which identifies main effects among the design parameters with a few experiments was used to decrease the number of experiments. The simulation for indoor air quality was undertaken using a validated equation. Then, ANOVA(Analysis of Variance) was performed to evaluate the relative importance of each parameter affecting the indoor air quality. The result of the study indicates that the indoor air quality may be influenced most by adhesive for wall/ceiling paper, followed by ventilation rate and adhesive for floor material.

A Study on Indoor Environment Performances of Power Yacht in Summer Season (여름철 파워요트 실내환경 성능에 관한 연구)

  • Lee, Han-Seok;Doe, Guen-Young;Lim, Duck-Min;Kim, Hak-Chul
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.175-180
    • /
    • 2009
  • In this study, the basic data were collected for improving the amenity of indoor environment of a super yacht and the performance of indoor environment was analyzed by utilizing measured data during summer period. Through the results of examination, the following conclusions are drawn. 1) It is estimated that, in case of closing the door of Saloon connected with outside, there is little inflow of exhaust gas, but when the door is open, the indoor-air might be polluted so fast. Therefore, it is necessary to make a counter plan about the method of ventilation and amount of ventilation to keep the indoor aerial environment agreeable. 2) It is urgent to conceive countermeasure against engine noise because the noise level of all rooms exceeds 60dB, which is regulation of noise for protecting crew established in ship's classification, during the sailing. 3) State cabin and Guest cabin are super cooled by operating air conditioner exceeding agreeableness extent and it is needed to prevent them.

Experimental Study on Natural Ventilation Performance of Double Facade System in Heating Period (난방기 중 이중외피 시스템의 자연환기 성능분석에 관한 실험적 연구)

  • Lee, Keon-Ho;Kim, Hyeon-Soo;Ko, Yung-Woo;Son, Young-Joo
    • KIEAE Journal
    • /
    • v.6 no.2
    • /
    • pp.43-50
    • /
    • 2006
  • A Double Facade System(DFS) is well known as an innovative solution of ecological facade in the west european countries. There are more than 200 various realized DFS in Germany. At the same time, the korean engineers have researched to find out the physical advantages of DFS in the moderate korean climate, which has a very humid summer with high temperature and a dry winter with low temperature. For example, the monthly mean temperature in Korea comes up to 28K, while that in Germany comes up to only 19K. That is, why a other solution of DFS is needed in Korea. This study has experimented the physical performance of the natural ventilation in the heating period. The preheating function of the cold air by DFS can improve no doubt the performance of the natural ventilation at the cold season as well as spring and autumn. The physical difference between single and double facade on natural ventilation has been tested at the newly constructed laboratory, which can turn $360^{\circ}$ to confirm the characteristic of a facade with the various directions. The results show the natural ventilation of the DFS has definitely much more comfortable than that of the single facade system. The air velocity of the inflow as well as the air temperature in the DFS provide a more stable condition than in the SFS. The theoretical limit(air velocity max 0.2m/s, air temperature min. $18^{\circ}C$, temperature difference between 100mm and 1700mm height max. 3K) on the indoor comfortableness doesn't go over in the DFS. On the other hand, the SFS showed an unstable condition with an excess of comfortableness limit on air velocity as well as temperature. In view of the researching results so far achieved, the research came to a conclusion, that the DFS can provide a more comfortable indoor condition by the preheating in the heating period than a SFS, and the period of natural ventilation in winter time could be definitely increased at the DFS.

Study on Ventilation Performance of Multi-room in Apartment - Airflow and Ventilation Effectiveness in Multi-room - (공동주택의 환기방식별 다수실 환기 성능에 관한 연구 - 다수실의 환기경로 및 환기효율 -)

  • Kwon, Kyung-Woo;Cho, Si-Jin;Choi, Eui-Sung;Park, Jun-Seok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.399-404
    • /
    • 2006
  • Heating and cooling load of ventilation is a very important part of building energy saving. Improving ventilation effectiveness can save building energy consume and supply fresh air to indoor efficiently. So this study measured mulity-zone aiflow and ventilation effectiveness according to ventilation types. Result of measurement show that ventilation effectiveness is depends on ventilation system design rather than ventilation types.

  • PDF

Indoor Air Quality Evaluation of Commercial Urban Regeneration Modular Structure According to Space Usage (상업용 도시재생 모듈러 건축물의 공간이용에 따른 실내공기질 평가)

  • Nam, So-Jeong;Kim, Sea-Ryon;Pyung, Woo-Jin;Kang, Yujin;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • From 2000s, modular construction has gained more attention due to many advantages such as reduction of duration, recycling. The modular structure is being used for urban regeneration recently. However, even though most facilities in the modular structures which are used as urban regeneration building are commercial spaces, exhibition spaces, eating and drinking spaces, there are lack of natural or mechanical ventilation systems. Also, there are relatively limited spaces on modular structure characteristic. Therefore, indoor environment performance of four buildings, which are performed as urban regeneration in Seoul, was evaluated by HCHO and $CO_2$ emissions. Consequently, the HCHO and $CO_2$ emissions of the commercial and exhibition spaces were confirmed that can influence on health of occupants. Therefore, the urban regeneration modular structure needs to add local ventilation systems for improvement of indoor air quality to more healthy and comfortable.

The study on the Performance of air sterilization of multistoried apartment by the multizone modeling (멀티죤 시뮬레이션에 의한 공동주택의 미생물 오염원제거 성능평가에 관한 연구)

  • Choi, Sang-Gon;Park, Kyung-Su;Yoon, Young-Soo;Hong, Jin-Kwan
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.319-324
    • /
    • 2006
  • The purpose of this study Is to evaluate the efficacy of multizone simulation that enables to grasp of details about microbial contaminant problem in an multistoried apartment. We used actual indoor test data to figure up microbial contaminant level as initial value for the multizone simulation and estimated the various effects of indoor occupant infected with germs and the performance of air sterilization by using multizone simulation in substitute for infeasible experimental approach. The results show that natural ventilation make ourselves generally useful for removing indoor microbial contaminants. The results also show that the performance of air sterilization reach the maximum in the case of using mechanical ventilation and UVGI air sterilizer. The conclusion is that this multizone simulation is useful tool for actual design method for Immune building systems.

  • PDF

Thermal and Ventilative Characteristics of Single-Span Oak Mushroom Production Facility as Affected by Area of Roof Opening and Shading Rates (단동 표고재배시설의 천창면적과 차광율에 따른 온도 및 환기특성)

  • 손정익
    • Journal of Bio-Environment Control
    • /
    • v.9 no.2
    • /
    • pp.120-126
    • /
    • 2000
  • The quality of oak mushoom(Lentinus edodes(Berk) Sing) is sensitively affected by environmental factors, especially moisture by the rain during the growing period. To protect mushrooms from being wet, plastic-covered facilities with side openings are mostly being used. However, the indoor temperature and humidity f the facility without roof opening become higher due to its poor ventilation, and consequently reduce the productivity and quality as well. In this study, we analyzed the ventilation rates and indoor temperatures of improved facilities as affected by the area of roof opening and shading rate by the model. The indoor temperature decreased by more than 2.5$^{\circ}C$ as the shading rate increased from 50% to 90%, and especially the effect of wind speed on indoor temperature was significantly great under as low as 50% of shading rate. The ventilation rate became higher under wind speed of 1~2m.s-1 regardless of the shading rate. As the wind speed increased from 0m.s-1 to 2m.s-1, the indoor temperature decreased by more than 2.$0^{\circ}C$. Moreover, the indoor temperature became lower with increasing roof opening ratio, but showed no significant differences at more than 50% of roof opening ratio. At lower shading rate, the indoor temperature sensitively decreased with increasing area of roof opening. Additionally, we obtained the higher ventilation performance with the area of roof opening more or less equal to side opening, regardless of the wind speed and shading rate.

  • PDF