• 제목/요약/키워드: indoor to outdoor ratio

검색결과 103건 처리시간 0.023초

실내외 공기중 휘발성 유기화학물질(VOCs)의 농도조사에 관한 연구 (Measurements of Indoor and Outdoor Volatile Organic Compounds(VOCs) Concentrations in Ambient Air)

  • 신혜수;김윤신;허귀석
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.310-319
    • /
    • 1993
  • A pilot study was conducted in order to investigate the concentrations of indoor and outdoor VOCs (Volatile Organic Compounds) at ten homes and four building offices in Seoul during March-April, 1993. The five components of VOCs(Benzene, Toluene, Ethylbenzene, o-Xylene, m/p-Xylene) were collected using charcoal tube and were analysed using Gas Chromatography(GC) with a Flame Ionization Detector(FID). The mean concentations of indoor VOCs were shown as Benzene of 38.9 .mu.g/m$^{3}$. Toluene of 165.0 .mu.g/m$^{3}$, Ethylbenzene of 21.7 .mu.g/m$^{3}$, o-Xylene of 11.6 .mu.g/m$^{3}$ and m/p-Xylene of 29.3 .mu.g/m$^{3}$, but those corresponding that indoor levels of VOCs were higher than corresponding outdoor levels. The ratio of indoor and outdoor VOCs were higher than corresponding outdoor levels. The ratio of indoor and outdoor VOCs concentrations was 0.99 for Benzene, 1.23 for Toluene, 5.86 for Ethylbenzene, 5.23 for o-Xylene, 2.41 for m/p-Xylene in homes, while 2.02 for Benzene, 1.15 for Toulene, 0.96 for Ethylbenzene, 1.41 for o-Xylene, 1.38 for m/p-Xylene in offices, respectively. The mean concentrations of VOCs in homes were higher than those levels in offices, while the mean concentration of VOCs during active hour of occupants in a day were higher 1-3 times than the levels during non-active hour. Comparing VOCs levels by building's age, the mean concentrations of Benzene, o-Xylene and m/p-Xylene were higher in new building than old building, but the mean concentrations of Toluene and Etylbenzene in new building were lower than old building. The mean concentrations in all components of VOCs in smoking area were higher than non-smoking area. These results suggested that the VOC levels were affected by various indoor characteristics and behavioral activity of occupants.

  • PDF

Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun
    • Architectural research
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 2006
  • A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.

Particulate Matters($PM_{10}$ and Particle-Bound Polycyclic Aromatic Hydrocarbons(PAHs) in Indoor and Outdoor Air in New and Sick Houses

  • Moon, Kyong-Whan;Byeon, Sang-Hoon;Choi, Dal-Woong;Lee, Jang-Hee;Kim, Young-Whan
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.315-318
    • /
    • 2005
  • $PM_{10}$ and 16 PAHs were measured in indoor and outdoor air of 5 different old houses, new and sick houses, respectively. $PM_{10}$ concentrations measured in indoor of three different kinds of houses ranged from 23 to 43 ${\mu}g/m^3$ and in outdoor ranged in 40-64 ${\mu}g/m^3$. Sum of average concentrations of PAHs in old, new and sick houses indoor air were 3.7 $ng/m^3$, 6.6 $ng/m^3$ and 16.1 $ng/m^3$, respectively, which were lower than those of outdoors. Most of the indoor/outdoor ratio for PAHs in each house were less than 1.0 and significant correlation(p<0.05) between indoor and outdoor samples was observed.

  • PDF

Indoor Air Quality of Acidic Air Pollutants at a Private House in Seoul During the Spring Months

  • Lee, Hak-Sung;Kang, Byung-Wook;Kang, Choong-Min;Yeo, Hyun-Gu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제17권E3호
    • /
    • pp.109-115
    • /
    • 2001
  • Acidic air pollutants were collected to characterize indoor air quality at a private house in Seoul during the spring period. All indoor and outdoor samples were measured simultaneously using an annular denuder system. The data set was collected on twelve different days with a 24-hr sampling period in April and May 1997. The chemical species measured were HN $O_3$, HN $O_2$, S $O_2$ and N $H_3$in the gas phase and P $M_{2.5}$ (dp 2.5 ${\mu}{\textrm}{m}$), S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ and N $H_4$$^{+}$ in the particulate phase. Indoor concentrations of HN $O_2$, N $H_3$, and P $M_{2.5}$ were greater than outdoor levels. However, indoor concentrations of HN $O_3$, S $O_2$, N $O_3$$^{[-10]}$ and N $H_4$$^{+}$ were less than those found from outdoors. In the case of S $O_4$$^{2-}$, the indoor and outdoor concentrations were similar. Indoor concentrations of P $M_{2.5}$ , S $O_4$$^{2-}$ and N $O_3$$^{[-10]}$ were dependent upon the outdoor concentrations. A tracer-gas decay technique with sulfur hexafluoride (S $F_{6}$ ) as the tracer gas was used to estimate the air exchange rate of a private home in the spring. The average air exchange rate was computed to be 2.87 h $r^{-1}$ .X> .

  • PDF

A Study for the Use of Solar Energy for Agricultural Industry - Solar Drying System Using Evacuated Tubular Solar Collector and Auxiliary Heater -

  • Lee, Gwi Hyun
    • Journal of Biosystems Engineering
    • /
    • 제38권1호
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: The objectives of this study were to construct the solar drying system with evacuated tubular solar collector and to investigate its performance in comparison with indoor and outdoor dryings. Methods: Solar drying system was constructed with using CPC (compound parabolic concentrator) evacuated tubular solar collector. Solar drying system is mainly composed of evacuated tubular solar collector with CPC reflector, storage tank, water-to-air heat exchanger, auxiliary heater, and drying chamber. Performance test of solar drying system was conducted with drying of agricultural products such as sliced radish, potato, carrot, and oyster mushroom. Drying characteristics of agricultural products in solar drying system were compared with those of indoor and outdoor ones. Results: Solar drying system showed considerable effect on reducing the half drying time for all drying samples. However, outdoor drying was more effective than indoor drying on shortening the half drying time for all of drying samples. Solar drying system and outdoor drying for oyster mushroom showed the same half drying time. Conclusions: Oyster mushroom could be dried easily under outdoor drying until MR (Moisture Ratio) was reached to about 0.2. However, solar drying system showed great effect on drying for most samples compared with indoor and outdoor dryings, when MR was less than 0.5.

서울시 도로변의 $PM3.5/NO_2$ 농도비 및 구두수선대 근로자의 노출평가 ($PM3.5/NO_2$ Concentration Ratio in Roadside and Exposure Assessment of Shoes Repairmen in Seoul)

  • 배현주;양원호;김나리;정문호
    • 환경위생공학
    • /
    • 제16권4호
    • /
    • pp.21-30
    • /
    • 2001
  • Vehicles, especially diesel-using, are a major source of airborne particulate matter(PM), nitrogen dioxide($NO_2$) and so on in metropolitan cities such as Seoul. Therefore workers, who are mainly merchants, near roadside may be highly exposed to air pollutants from exhausted emissions of vehicles. This means that occupational type and location can affect the workers'health by exposure to outdoor pollutions of ambient as well as indoor pollutions of working condition, respectively. In this study, we simultaneously measured the PM3.5 and $NO_2$concentrations in indoor and outdoor of shoes repair shops in Seoul, which were generally located at roadside in Korea. Shoes repairmen were highly exposed to PM3.5 and $NO_2$ both indoor and outdoor of repair shops comparing with other sub-population groups. High exposure to air pollutants for shoes repairmen was considered to be outdoor source from exhausted emission of vehicles and indoor source from working condition. The $PM3.5/NO_2$ concentration ratio was $1.17{\pm}$0.59 in roadside, of which ratio was higher 7han ratios of other studies. This result suggested that major air pollutant in Seoul was fine particle. Also, this PM3.5 to $NO_2$ ratio will be used in environmental exposure and risk assessment by estimation of PM3.5 concentration as measuring the only $NO_2$ concentration with small and accurate $NO_2$ passive sampler.

  • PDF

주택특성에 관련된 실내 이산화질소 농도에 관한 연구 (A Study on Concentration of Indoor Nitrogen Dioxide in Relation to House Characteristics)

  • 양원호;배현주;김현용;정문식;정문호
    • 환경위생공학
    • /
    • 제14권4호
    • /
    • pp.85-92
    • /
    • 1999
  • Indoor air quality tends to be the dominant contributor to personal exposure because most people spend over 90% of their time indoors. For some contaminants, exposure to indoor air poses a potentially greater health threat than outdoor air exposures. Indoor nitrogen dioxide ($NO_2$) levels are mainly affected gas range, flue gas spillage, kerosene heaters, wood-burning appliances and cigarette smoke. In addition, indoor $NO_2$ levels are influenced by such house characterization as surface reaction and air exchange rate. In this study, the measurements of indoor and outdoor $NO_2$ concentrations were taken using identical protocols, and information was collected on housing characteristics using identical questionnaires in 14 houses out of 15 houses for daily 30 daily 30 days in Brisbane, Australia.The usage of gas range was the most contributing factor in indoor $NO_2$ concentration in relation to house characteristics. Average indoor and outdoor ratios of NO2 concentration in electronic and gas cooking houses were $0.6{\pm}0.1$ and $0.9{\pm}0.2$, respectively. The frequency distributions of $NO_2$ concentration in each house were approximately log-normal Geometric mean of indoor $NO_2$ concentrations of electronic and gas cooking houses for daily 30 days ranged from 2.5 ppm to 11.5 ppm with a mean 6.8 and from 4.7 ppm to 28.6 ppm with a mean 15.6 ppm, respectively. The $NO_2$ concentrations between electronic and gas cooking houses were significantly different (p<0.05). Since each house has different life-style and house characteristics, sampling interval to measure the $NO_2$ levels was recommended above 7 days.

  • PDF

여름철 가정집에서의 산성오염물질에 대한 실내 공기질 특성 (Characteristics of Indoor Air Quality of Acidic Air Pollutants in a Private Home During Home During the Summer Season)

  • 이학성;강병욱;강충민;여현구
    • 한국대기환경학회지
    • /
    • 제17권2호
    • /
    • pp.193-201
    • /
    • 2001
  • Acidic air pollutants were collected to characterize indoor air quality in a residential area in the summer. All indoor and outdoor samples were measured simultaneously using an annular denuder system(ADS) in Seoul. The data set was collected from July 26 to September 11, 1997. The mean indoor/outdoor ratios measured from this study were : 0.34 for $HNO_3$; 0.91 for $HNO_2$; 0.22 for $SO_2$; 1.34 for $NH_3$; 0.78 for $PM_{2.5}(d_p$ <2.5 $mutextrm{m}$); 0.90 for $SO_{4}^{2-}$; 0.68 for $NO_{3}^{-}$ and 0.79 for $NH_{4}^{+}$. Indoor concentrations of $HNO_3$, $SO_2$ and $PM_{2.5}$ were highly correlated with the outdoor concentrations. The relationship between indoor and outdoor air is dependent, to a large extent, on the rate of air exchange between these two environments. A tracer-gas decay technique with sulfur hexafluoride ($SF_{6}$) as a tracer gas was used to estimate the air exchange of a private home in the summer. The average air exchange rate was estimated to be 23.7 hr(sup)-1. The deposition velocities for $SO_{4}^{2-}$, $NO_{3}^{-}$ and $NH_{4}^{+}$ calculated were 0.17, 0.69 abd 0.39 cm/sec, respectively.

  • PDF

도로변 구두수선대 실내.외의 이산화질소 농도 및 거리에 따른 이산화질소 감소 - 서울시와 아산시의 비교 연구 - (Indoor and Outdoor $NO_2$ Concentration of Shoe-stall near Busy Road and $NO_2$ Decay by Distance from Roadside - Comparative Study between Seoul and Asan -)

  • 양원호;손부순;박종안;김종오
    • 환경위생공학
    • /
    • 제17권2호
    • /
    • pp.85-91
    • /
    • 2002
  • Workers who work at indoor and outdoor environment near busy road are suspected to be exposed to high-elevated air pollutant levels during working hours. This study evaluated the working-time nitrogen dioxide ($NO_2$) exposure for workers (repairmen and polishers) of shoe-stalls. Since shoe-stalls have particularly been located near busy road in Korea, workers might be high exposure to $NO_2$ from traffic exhaust as well as indoor sources of shoe-stall such as portable gas range (butane gas) during working hours. In this study, we measured the indoor and outdoor $NO_2$ concentrations of shoe-stalls. Simultaneously, outdoor $NO_2$ concentrations of building through sidewalk from shoe-stall were measured. High $NO_2$ exposure for workers of shoe-stalls was considered to be inflow of outdoor source of exhausted emission from vehicles and indoor source from usage of gas range to polish the shoe. Indoor/outdoor $NO_2$ concentration ratio ($0.94{\pm}0.22$) in Seoul was higher than that ($1.06{\pm}0.34$) in Asan, because ambient $NO_2$ level was high in Seoul and usage of gas range was prevalent in Asan. According to $NO_2$ concentrations by distance from roadside to building through sidewalk, $NO_2$ concentrations showed the decreased trend with distance. The results of this study can be utilized by municipal authorities in urban planning for evaluating effects of future traffic planning and land use.

공단지역 일부 주민들의 주택유형 및 실내/외에 따른 VOCs(Benzene, Toluene, Xylene) 농도 및 상관성에 관한 연구 (A Study on the Correlation and Concentration in Volatile Organic Compounds(Benzene, Toluene, Xylene) Levels According to the Indoor/Outdoor and the Type of Residents' House in Industrial Area)

  • 이치원;전혜리;홍은주;유승도;김대선;손부순
    • 한국환경보건학회지
    • /
    • 제36권5호
    • /
    • pp.351-359
    • /
    • 2010
  • The objectives of this study were to understand the characteristics of residents in industrial areas and factors affecting exposure to the Volatile Organic Compounds(VOCs : Benzene, Toluene, Xylene) as well as to assess exposure levels according to house-type, and whether residents were indoors or outdoors. This research was designed to assess the differences in exposure levels to indoor, outdoor and personal VOCs in a case group and a control group across all areas, as well as in each different area, from May to October 2007, in. 110 residents of the G, Y and H industrial areas of the Jun-nam province. The geometric mea-levels of airborne benzene for the case group 1.31part per billion(ppb) indoor, 1.29 ppb outdoor, and 1.32 ppb for personal exposure were significantly higher than for the control group 0.99, 0.87 and 0.57 ppb, respectively. The geometric mean level for toluene personal exposure across the G, Y and H areas was 5.70 ppb for the case group and 6.31 ppb for the control group. While the outdoor level was 4.27 ppb for the case group and 5.06 ppb for the control group, The indoor level for the case group was 4.78 ppb, similar to that of the control group 4.69 ppb. The geometric mean levels for airborne xylene across the G, Y and H areas were 0.16 ppb(outdoor), 0.12 ppb(personal exposure) and 0.10 ppb(indoor) for the case group, and for the control group were 0.17(personal exposure) and 0.09 ppb(indoor and outdoor). The indoor/outdoor(I/O) ratio for case group is 1.19, while that of the control group is 1.15, indicating that the indoor level was higher than the outdoor level. The interrelationship differences among the three different types of levels in the air in the G, Y and H areas are statistically significant, except for the difference between the indoor and outdoor figures for xylene. In terms of the different types of houses and energy type uesd, the geometric mean level for airborne benzene, toluene and xylene for houses were 1.61, 5.39 and 0.12 ppb, respectively. while the figures for flats were 0.67, 3.32 and 0.05 ppb, respectively. Outdoors, the levels of benzene and toluene in flats were 0.71 and 2.62 ppb, respectively. and 1.58 and 5.35 ppb in houses. For personal exposure, the house levels of benzene, toluene and xylene were all higher than for flats. Houses using oil for heating have significantly higher levels than flats, which use gas for heating.