• Title/Summary/Keyword: indoor test

Search Result 766, Processing Time 0.027 seconds

Pressure Analysis and Conceptual Design for Indoor Ballistic Test Range by Numerical Methods (수치해석기법을 이용한 실내시험장 압력특성해석 및 개념설계)

  • Jung, Hui-Young;Park, Kwan-Jin;Kim, Nam-Hyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • For evaluating a large caliber ammunition tests, indoor ballistic test range is required to reduce the noise and fragments occurring during the test. To ensure the reliability of the indoor ballistics test range design, we carried out the analysis of the indoor test range using the AUTODYNE hydrodynamic code before its construction. The 120 mm tank ammunition is adopted as a reference model and we analysed the characteristics of the pressure distribution at fire area, the structure design at impact area, the over-pressure applied to the tunnel, and the sabot stopper design. The results of the analysis were applied to the design of the indoor ballistic test range.

A Study on Mitigation Methods of Indoor Radon Concentration in Residential Buildings(I) - Test Cell Study (주거용 건축물의 실내 라돈농도 경감방안에 관한 연구(I) -Test Cell Study)

  • Cha, Dong-Won
    • KIEAE Journal
    • /
    • v.1 no.2
    • /
    • pp.21-28
    • /
    • 2001
  • Naturally-ocurring short-lived decay products of radon gas in indoor air are the dominant source of ionizing radiation exposure to the general public. It is written in BEIR VI Report(l999l the radon progeny were identified as the second cause of lung cancer next to cigarette or 10 % to 14 %(15,400 to 21,800 persons p.a.) of all lung cancer deaths in USA. Indoor radon concentrations in houses typically result from radon gaining access to houses mainly from the underlying soil. In the States, they have "Indoor Radon Abatement Act" which was converted from "Toxic Substance Control Act" in 1988 to establish the national long-term goal that indoor air should be as free of radon as the ambient air outside of buildings. To review and study techniques for controlling radon, two test cells were constructed for a series of tests and are under measuring indoor and soil gas (underneath of floor slab)radon concentrations according to EPA's measurement protocol. In this paper, important theoretical studies are previewed and the following paper will explain the test results and confirm the theories reviewed to find out suitable coefficients. On the basis of test analysis, it will be described and evaluated various techniques that can be used to mitigate elevated indoor concentration of radon including the control of radon and its decay products.

  • PDF

Test bed implementation and the indoor antenna algorithms fit for the indoor channel characteristic (옥내 무선 채널에 적합한 옥내 안테나 알고리즘과 검증시스템 구현)

  • Lee Yong up;Seo Young jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.207-214
    • /
    • 2005
  • In the indoor wireless communication, it is considered the indoor wireless system architecture of single input multiple output (SIMO) that used with multiple antenna in order to cope with the indoor fading characteristic due to severe angler spread. We propose the mean steering vector technique as a method to enhance the system Performance, implement the test bed system composed of a PC and the algorithms of the wireless system, and analysis the performance of those algorithms. In addition, the overall operation scenario, overall architecture, and the execution time of the algorithms, of the test bed for the indoor wireless system are presented.

Implementation of Indoor Localization System

  • Ryu, Dong-Wan;Kim, Sun-Hyung;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.54-60
    • /
    • 2019
  • In this paper, a localization system for indoor objects is proposed. The proposed system consists of Beacons, LED Cells, Main Cell Controller (MCC), and Display. A Beacon is attached at each indoor object, and each LED cell has Beacon Scanner and VLC Transmitter. The Visual Light Communications (VLC) and Power Line Communications (PLC) methods are used to communicate the signals for localization of indoor objects. And the proposed system is designed, and implemented as a prototype. To certify that our propose d system can exactly localize a given indoor object, we take test for the implemented system as a p rototype. Here the location of the given indoor object is known. Test is done in two ways. The first is to check the operation of the detail of the system, and the second is the position recognition of i ndoor object. The second is the test of the implemented system to correctly detect the location of the indoor object with Beacon, while the object with Beacon is moved from location C to A. The experimental result shows that the system is exactly detect the moving locations. The system has the advantages of using previously installed power lines, and it does not need to use LAN lines or optical cables. The proposed system is usefully applied to indoor object localization area.

A Prediction Model for TVOC and HCHO Emission of Paint Materials (페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

Calculation of the Theoretical Total Amount Ratio of Di(2-ethyl-hexyl) Phthalate in Indoor Air and Floor Dust in a Test House (모의 실험주택 모니터링 결과를 활용한 실내공기 및 바닥먼지 중 Di(2-ethyl-hexyl) phthalate (DEHP)의 이론적 총량 비율 산출)

  • SaHo Chun;Khawon Lee;SeungJung Kim;SeungPyo Jung;DaYoung Kang;Ki-Tae Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.324-333
    • /
    • 2023
  • Background: Human exposure to phthalates in indoor environments occurs via dermal absorption, oral ingestion of indoor dust, and inhalation of indoor air. However, systematic studies to investigate the exposure rate to phthalates among the three exposure routes in indoor environments are currently limited. Objectives: A theoretical exposure ratio between inhalation and oral exposure was calculated based on the total amount of di(2-ethyl-hexyl) phthalate (DEHP) emitted into indoor air and deposited into floor dust in a test house. Methods: Flooring and wallpaper containing DEHP were installed in a test house and the concentration of DEHP in both indoor air and floor dust were monitored for five months. Based on the measured DEHP concentrations, the theoretical total amount ratio of DEHP that could be exposed through inhalation and oral ingestion was calculated. Results: Considering the period of operation in the test house, the theoretical total amount of DEHP through inhalation and oral ingestion exposures in the entire test house space was calculated to be 0.014 mg and 5.5 mg, respectively. The exposure ratio of the two routes between inhalation and oral exposure corresponding to the total DEHP amount in flooring and wallpaper was 6.0×10-7% and 2.3×10-4%, indicating that theoretical oral exposure to DEHP is approximately 380 times higher than inhalation. Conclusions: Monitoring results from a test house has shown that oral exposure is the main exposure route for DEHP in indoor environments. The experimental design employed in this study and theoretical exposure ratio obtained can be applied to investigate actual exposure to DEHP and to determine the exposure characteristics of various types of semi-volatile organic compounds.

Temporal Variation of Indoor Air Quality in Daycare Centers (어린이집에서 이산화탄소와 미세먼지의 장기간 시간적인 변이를 활용한 실내환경수준 평가)

  • Kim, Yoonjee;Lee, Sewon;Ban, Hyunkyung;Cha, Sangmin;Kim, Geunbae;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.267-272
    • /
    • 2017
  • Objectives: The purposes of the study were to analyze the temporal variation of carbon dioxide ($CO_2$) and particulate matter (PM) in daycare centers and evaluate the appropriateness of the official test method of one-time measurement. Methods: Indoor air quality in 46 daycare centers in the Seoul Metropolitan Area was measured as specified in the official test method of Indoor Air Quality Management law. In addition, indoor air quality in the 46 daycare centers was measured over 37 days using a real-time monitor (AirGuard K). Results: The daily means of $CO_2$ and PM in the 46 daycare centers were $1042.74{\pm}134.45ppm$ and $67.60{\pm}18.25{\mu}g/m^3$, respectively. Indoor air quality in the daycare centers showed significant temporal fluctuation. Measurements for single days were significantly different from the 37-day average exposure. Relative error of short term exposure decreased with an increase in the number of sampling days. The noncompliance rate for $CO_2$ using the official testing method was 2.17%, and none exceeded the $PM_{10}$ standard of $100{\mu}g/m^3$. With monitoring over 37 days, the daily noncompliance rate for $CO_2$ was 50.4% and the daily noncompliance rate for PM was 13.8%. Conclusions: When the official test method evaluates the indoor air at daycare centers one day per year, the results may not represent actual indoor air quality over a longer period of time. Real-time monitoring devices could be an alternative for managing indoor air quality.

The Characteristic of Volatile Organic Compounds(VOCs) Emission from the Type of Indoor Building Materials as the Temperature and Humidity (온.습도에 따른 건축 내장재별 휘발성유기화합물의 방출특성)

  • Seo, Byeong-Ryang;Kim, Shin-Do;Park, Seong-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.292-303
    • /
    • 2006
  • The Volatile Organic Compounds(VOCs) are emitted from various sources and have lots of different form. Recently human are spending the many times at indoor area and indoor air pollution is issued the important social problem. The emission sources of indoor air pollutants are very various, also indoor building materials are composed of very complex chemical compounds, these indoor building materials discharge very much VOCs and other hazardous compounds. In this study, we performed the small chamber test to investigate the VOCs emission concentration and characteristics involving five kinds of the indoor building materials(furniture material, wooden floor, wall paper, paint and tile) under different conditions of four temperature and relative humidity as account of the air flow rate(AFR), air exchange rate(AER), loading factor and air velocity respectively. As the result, It was showed that building materials are emitted the highest VOCs concentration at the beginning of experiment and furniture material is emitted the highest VOCs concentration. Most of the materials were affected by temperature, but paint and tile material were affected by humidity.

A Comparative Study on Clinical Gait Abilities of Stroke Patients According to Indoor and Outdoor Environments

  • Hwang, Hyesun;Woo, Youngkeun;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.356-366
    • /
    • 2021
  • Objective: This study aimed to compare gait ability through gait evaluations in indoor and outdoor environments according to the general characteristics and walking ability of stroke patients. Design: Crossed-sectional study. Methods: The subjects of this study were 57 hospitalized stroke patients.The study subjects were asked to select an indoor environment and an outdoor environment in random order, and the Timed Up and Go Test (TUG), 10-Meter Walk Test (10MWT), Figure-Eight Walk Test (F8WT) and the Functional Gait Assessment (FGA) were used to assess each environment. Results: The TUG, 10MWT, F8WT time and number of steps, and FGA showed a significant decrease in gait ability in the outdoor environment compared to the indoor environment (p<0.05). Although the TUG, 10MWT, and the time required for the F8WT were statistically higher in the outdoor compared to the indoor environment at points 2, 3, and 4, but not 5 of the functional ambulatory category (FAC), significant increases in the number of steps of the F8WT were found in the outdoor compared to the indoor environment for only points 2 and 3 of the FAC (p<0.05). In the FAC 3 and 4, there was a statistically significant decrease in the outdoor compared to the indoor environment only in the FGA (p<0.05). Conclusions: Therefore, it has been shown that the gait ability of stroke patients is reduced in the outdoor environment compared to the gait ability in the indoor environment.

Construction of Indoor Ground Station for Cubesat Communication Test (큐브위성 송수신시험을 위한 실내용 지상국 구축)

  • Han, Sanghyuck;Moon, Sangman;Shin, Dongyeop;Moon, SungTae;Gong, Hyeon Cheol;Choi, Gi-Hyuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • During developing cubesat flight software, Communication test between cubesat and ground station is needed. For this, we have constructed indoor ground station without outdoor antenna for decreasing total cost and time. In this time, if output power of ground station is high, it will affect for cubesat transceiver to be fail. For solving this problem, ground station must be designed for output power of it to be lower than input power of cubesat satellite, and it must be verified. In this paper, first, we describe cubesat indoor ground station using UHF and VHF. Second, we describe output power decreasing test for indoor operation of ground station by attaching attenuators in the end of the output connector.