• 제목/요약/키워드: indoor robot

검색결과 409건 처리시간 0.04초

BLE기반 비콘을 이용한 실내 환경에서의 사용자 위치추정 (Estimation of Human Location in Indoor Environment using BLE-based Beacon)

  • 임수종;성민관;윤상석
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.195-200
    • /
    • 2021
  • In this paper, we propose a method for a mobile robot to estimate a specific location of a service provision target using a beacon-tag for the purpose of providing location-based services (LBS) to users in an indoor environment. To estimate the location, the irregular characteristics and error factors of the received signal strength indicator (RSSI) generated from the beacon are analyzed, and the distance conversion function is derived from the RSSI data extracted by applying a Gaussian filter. Then, the distance data converted from the plurality of beacons estimates an indoor location through a triangulation technique. After that, the improvement in the location estimation is analyzed by applying the temporal confidence reasoning technique. The possibility of providing a LBS of a mobile robot was confirmed through a location estimation experiment for a plurality of designated locations in an indoor environment.

실내 환경에서 가시광을 이용한 로봇의 위치 인식 (Positioning of Robot using Visible Light in Indoor Environment)

  • 강인성;민세웅;남해운
    • 로봇학회논문지
    • /
    • 제11권1호
    • /
    • pp.19-25
    • /
    • 2016
  • In this paper, we propose a new method for improving the accuracy of localizing a robot to find the position of a robot in indoor environment. The proposed method uses visible light for indoor localization with a reference receiver to estimate optical power of individual LED in order to reduce localization errors which are caused by aging of LED components and different optical power for each individual LED, etc. We evaluate the performance of the proposed method by comparing it with the performance of traditional model. In several simulations, probability density functions and cumulative distribution functions of localization errors are also obtained. Results indicate that the proposed method is able to reduce localization errors from 7.3 cm to 1.6 cm with a precision of 95%.

비전을 활용한 사람을 따라다니는 로봇의 실내측위에 관한 연구 (The Study on Indoor Localization for Robots following Human using Vision Applications)

  • 전봉기
    • 한국정보통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1370-1374
    • /
    • 2013
  • 주인을 스스로 따라다니는 로봇 캐리어가 등장하여 화제가 되었다. 최근에는 사람을 따라다니는 청소기가 로봇청소기가 출시되었다. 로봇 휠체어 등 주인이나 빛을 인식하여 따라다니는 로봇들이 다양한 응용에서 사용되고 있다. 본 연구에서는 로봇이 물건을 싣고 주인을 따라다니는 로봇을 개발하는 과정에서 로봇의 귀환문제를 다루고자 한다. 이 논문에서는 영상처리기술을 이용하여 로봇의 위치를 파악할 수 있는 실내 측위 방법을 제안한다.

실내용 위치센서의 특성과 이동로봇의 주행제어에 관한 실험적 연구 (Experimental Research on the Characteristics of Indoor Positioning Systems and Mobile Robot Navigation)

  • 안재완;진지용;정우진
    • 로봇학회논문지
    • /
    • 제5권3호
    • /
    • pp.231-239
    • /
    • 2010
  • For indoor mobile robots, the performance of autonomous navigation is affected by a variety of factors. In this paper, we focus on the characteristics of indoor absolute positioning systems. Two commercially available sensor systems are experimentally tested under various conditions. Mobile robot navigation experiments were carried out, and the results show that resultant performance of navigation is highly dependent upon the characteristics of positioning systems. The limitations and characteristics of positioning systems are analyzed from both quantitative and qualitative point of view. On the basis of the analysis, the relationship between the positioning system characteristics and the controller design are presented.

모바일 로봇의 강인한 위치 추정 기법 (Robust Positioning-Sensing for a Mobile Robot)

  • 이장명;황진아;허화라;강진구
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.221-226
    • /
    • 2007
  • A robust position-sensing system is proposed in this paper for ubiquitous mobile robots which move indoor as well as outdoor. The Differential GPS (DGPS) which has position estimation error of less than 5 m is a general solution when the mobile robots are moving outdoor, while an active beacon system (ABS) with embedded ultrasonic sensors is selected as an indoor positioning system. The switching from the outdoor to indoor or vice versa causes unstable measurements on account of the reference and algorithm changes. To minimize the switching time in the position estimation and to stabilize the measurement, a robust position-sensing system is proposed. In the system, to minimize the switching delay, the door positions are stored and updated in a database. The reliability and accuracy of the robust positioning system based on DGPS and ABS are verified through the real experiments using a mobile robot prepared for this research and demonstrated.

  • PDF

실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성 (LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments)

  • 이로운;박정홍;홍성훈
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Localization for Mobile Robot Using Vertical Lines

  • Kang, Chang-Hun;Ahn, Hyun-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.793-797
    • /
    • 2003
  • In this paper, we present a self-localization method for mobile robots using vertical line features of indoor environment. When a 2D map including feature points and color information is given, a mobile robot moves to the destination, and acquires images by one camera from the surroundings having vertical line edges. From the image, vertical line edges are detected, and pattern vectors meaning averaged color values of the left and right region of each line segment are computed. The pattern vectors are matched with the feature points of the map using the color information and the geometrical relationship of the points. From the perspective transformation of the corresponded points, nonlinear equations are derived. Localization is carried out from solving the equations by using Newton's method. Experimental results show that the proposed method using mono view is simple and applicable to indoor environment.

  • PDF

Mobile robot indoor map making using fuzzy numbers and graph theory

  • Kim, Wan-Joo;Ko, Joong-Hyup;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.491-495
    • /
    • 1993
  • In this paper, we present a methodology to model an indoor environment of a mobile robot using fuzzy numbers and to make a global map of the robot environment using graph theory. We describe any geometric primitive of robot environment as a parameter vector in parameter space and represent the ill-known values of the prameterized geometric primitive by means of fuzzy numbers restricted to appropriate membership functions. Also we describe the spatial relations between geometric prinitives using graph theory for local maps. For making the global map of the mobile robot environment, the correspondence problem between local maps is solved using a fuzzy similarity measure and a Bipartite graph matching technique.

  • PDF

구조화된 실내 환경에서 초음파센서를 이용한 모바일 로봇 실시간 localization 기법 (Real-time Localization of Mobile Robot Using Ultrasonic Sensor in Structured Indoor Environment)

  • 이만희;조황
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1068-1076
    • /
    • 2005
  • In order to increase the autonomous navigation capability of a mobile robot, it is very crucial to develop a method for the robot to be able to recognize a priori hon structured environmental characteristics. This paper proposes an ultrasonic sensor based real-time method for recognizing a priori known structured indoor environmental characteristics like a wall and comer Unlike the methods reported in the literature the information obtained from the sensor can be processed in real-time by extended Kalman filter to update estimations of the position and orientation of robot with respect to known environmental characteristics.

이동로봇을 위한 카메라를 이용한 소형 장해물 인식 (Recognition of small-obstacles using a camera and program for a mobile)

  • 김갑순
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.463-466
    • /
    • 2004
  • This paper describes an image processing algorithm for recognition of small-obstacles using a camera and program for a mobile robot in indoor environment. Mobile robot could meet small-obstacles such as a small plastic bottle of about 1l in quantity, a small box of 7$\times$7$\times$7 cm$^3$ in volume, and so on in its designated path, and could be disturbed by them in the locomotion of a mobile robot. So, it is necessary to research on the image processing algorithm for recognition of small-obstacles using a camera and program. In this paper, 2-D the image processing algorithm for recognition of small-obstacles using a camera and program for a mobile robot in indoor environment was developed. The characteristic test of the developed program to confirm the recognition of small-obstacles was performed. It is shown that the developed program could recognize small-obstacles accurately.

  • PDF