Journal of Advanced Marine Engineering and Technology
/
v.38
no.5
/
pp.566-572
/
2014
Recently, indoor navigation has been applied in large convention centers by using wireless sensor networks (WSNs), which provide not only a user's path to be traveled but also orientation and shopping information to increase user's convenience. This paper presents the localization system for estimating relative coordinates without pre-deployment of the reference node based on ultra wide band (UWB) ranging system, which is relatively suitable for indoor localization compared to other wireless communications, and azimuth sensor. The proposed localization system which consists of an azimuth sensor and a mobile node composed of three nodes estimates relative coordinates of the reference node without applying any recursive and time consumption algorithms. Also, in the process of estimating relative coordinates of the reference node, ranging errors are minimized through the proposed technique and the number of nodes can be reduced. Experimental results show the feasibility and validity of the proposed system.
KIPS Transactions on Computer and Communication Systems
/
v.6
no.3
/
pp.113-120
/
2017
In recent years, indoor localization has been researched for the improvement of its localization accuracy capability in Wi-Fi environment. The fingerprint and RF propagation models has been the main approach in determining indoor positioning. With the use of fingerprint, a low-cost, versatile localization system can be achieved without the use of external hardware. However, only a few research have been made on virtual access points (VAPs) among indoor localization models. In this paper, the idea of indoor localization system using fingerprint with the addition of VAP in Wi-Fi environment is discussed. The idea is to virtually add APs in the existing indoor Wi-Fi system, this would mean additional virtually APs in the network. The experiments of the proposed algorithm shows the positive results when 2VAPs are used compared with only APs. A combination of 3APs and 2VAPs in the 3rd case had the lowest average error of 3.99 among its 4 scenarios.
Journal of information and communication convergence engineering
/
v.6
no.1
/
pp.10-14
/
2008
The robot localization problem is a key problem in making truly autonomous robots. In this work we provide thorough discussions of Ultrasonic Positioning System can be applied to the localization problem. First, we look at the use of Kalman filters and basic concept and the equation involved in Kalman filters. Secondly, we create understanding of how the Kalman filters can be implemented in robot localization. We show our discussion and experiments how Kalman filters applied to the localization problem. Lastly, we perform simulations using Usat Wheel Chair robot in our own general Kalman filters robot monitoring software.
In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.
In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.
As the number of smartphone users increases, research on indoor location recognition service is necessary. Access to indoor locations is predominantly WiFi, Bluetooth, etc., but in most quarters, WiFi is equipped with WiFi functionality, which uses WiFi features to provide WiFi functionality. The study uses the random forest algorithm, which employs the fingerprint index of the acquired WiFi and the use of the multI-value classification method, which employs the receiver signal strength of the acquired WiFi. As the data of the fingerprint, a total of 4 radio maps using the Mac address together with the received signal strength were used. The experiment was conducted in a limited indoor space and compared to an indoor location recognition system using an existing random forest, similar to the method proposed in this study for experimental analysis. Experiments have shown that the system's positioning accuracy as suggested by this study is approximately 5.8 % higher than that of a conventional indoor location recognition system using a random forest, and that its location recognition speed is consistent and faster than that of a study.
In the paper we propose and implement a new indoor localization system where the techniques of magnetic field based fingerprinting and pedestrian dead reckoning are combined. First, we determine a target's location by comparing acquired magnetic field values with a magnetic field map containing pre-collected field values at different locations and choosing the location having the closest value. As the target moves, we use pedestrian dead reckoning to estimate the expected moving path, reducing the maximum positioning error of the initial location. The system eliminates the problem of localization error accumulation in pedestrian dead reckoning with the help of the fingerprinting and does not require Wi-Fi AP infrastructure, enabling cost-effective localization solution.
Journal of the Korea Society of Computer and Information
/
v.26
no.6
/
pp.29-35
/
2021
In this paper, we propose a method that combines KNN(K-Nearest Neighbor), Local Map Classification and Bayes Filter as a way to increase the accuracy of location positioning. First, in this technique, Local Map Classification divides the actual map into several clusters, and then classifies the clusters by KNN. And posterior probability is calculated through the probability of each cluster acquired by Bayes Filter. With this posterior probability, the cluster where the robot is located is searched. For performance evaluation, the results of location positioning obtained by applying KNN, Local Map Classification, and Bayes Filter were analyzed. As a result of the analysis, it was confirmed that even if the RSSI signal changes, the location information is fixed to one cluster, and the accuracy of location positioning increases.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.75-80
/
2021
Positioning technology is performing important functions in augmented reality, smart factory, and autonomous driving. Among the positioning techniques, the positioning method using beacons has been considered a challenging task due to the deviation of the RSSI value. In this study, the position of a moving object is predicted by training a neural network that takes the RSSI value of the receiver as an input and the distance as the target value. To do this, the measured distance versus RSSI was collected. A neural network was introduced to create synthetic data from the collected actual data. Based on this neural network, the RSSI value versus distance was predicted. The real value of RSSI was obtained as a neural network for generating synthetic data, and based on this value, the coordinates of the object were estimated by learning a neural network that tracks the location of a terminal in a virtual environment.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2006.05a
/
pp.84-89
/
2006
GPS(Global Positioning System)는 이미 전 세계적으로 다양한 응용분야를 가지고 널리 사용되고 있다. 그러나 현재 지구 주위를 운항하고 있는 24개의 GPS 위성으로 지상 어느 곳에서나 24시간 동안 위성신호를 수신할 수 있게 되었지만 고층 빌딩과 같은 도심 계곡, 복잡한 한국지형, 산악지역 등에서의 위성 장애물에 의한 신호의 차단으로 한계가 발생하고 있다. NAVSYNC의 CW25 GPS 수신기는 -156dBm이하의 신호강도에서도 확실한 위치 fix가 가능하고, 이러한 능력은 도심지나, 울창한 숲과 심지어는 건물 안과 같이 신호가 미약한 지역에서도 사용될 수 있다. 이에 본 연구에서는 Indoor GPS 수신기를 이용하여 측지분야에서 검증된 GPS측량방법을 통해 수신 데이터를 비교 분석하고 수신기의 정밀도에 관한 연구를 하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.