• Title/Summary/Keyword: indoor concentration

Search Result 827, Processing Time 0.03 seconds

Simulation and Health Risk Evaluation of Indoor Air Quality Changes by Ventilation System in New Apartment (신축아파트 환기방식에 따른 실내공기질 변화와 이에 대한 시뮬레이션 및 건강 위해성 평가)

  • Bao, Wei;Jung, Jaeyoun;Jeong, Insoo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.4
    • /
    • pp.38-45
    • /
    • 2021
  • In this study, air quality conditions were identified and analyzed in real time, at the same time, living habits and ventilation methods were maintained in the daily life of residents, and thus, this present study focuses on the lifestyles of residents. Previous studies showed a difference from this study, focusing on the study on the effects of changes in indoor air quality on human health according to the indoor air quality process test standards of the Ministry of Environment. Formaldehyde concentrations exceeded all ventilation standards, but satisfied the organic standards of the Ministry of Environment when ventilation devices and air purifiers were activated. As such, it was investigated that a large amount of formaldehyde emission in the condo is initially ventilated, but a certain concentration is maintained. The change in PM2.5 concentration according to the ventilation method showed a clear difference. As a result of simulating indoor air flow during natural ventilation, the effects of wind speed and wind direction affect the flow rate of indoor air, and indoor polluted air is stagnant even in the presence of wind and is not completely discharged. When the risk assessment results are averaged on the day of measurement, the trends of change between adults and children are almost equivalent, but the results address that children are more sensitive to risk than adults.

Indoor Radon and Lung Cancer: Estimation of Attributable Risk, Disease Burden, and Effects of Mitigation

  • Kim, Si-Heon;Koh, Sang-Baek;Lee, Cheol-Min;Kim, Changsoo;Kang, Dae Ryong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1123-1130
    • /
    • 2018
  • Purpose: Exposure to indoor radon is associated with lung cancer. This study aimed to estimate the number of lung cancer deaths attributable to indoor radon exposure, its burden of disease, and the effects of radon mitigation in Korea in 2010. Materials and Methods: Lung cancer deaths due to indoor radon exposure were estimated using exposure-response relations reported in previous studies. Years of life lost (YLLs) were calculated to quantify disease burden in relation to premature deaths. Mitigation effects were examined under scenarios in which all homes with indoor radon concentrations above a specified level were remediated below the level. Results: The estimated number of lung cancer deaths attributable to indoor radon exposure ranged from 1946 to 3863, accounting for 12.5-24.7% of 15623 total lung cancer deaths in 2010. YLLs due to premature deaths were estimated at 43140-101855 years (90-212 years per 100000 population). If all homes with radon levels above $148Bq/m^3$ are effectively remediated, 502-732 lung cancer deaths and 10972-18479 YLLs could be prevented. Conclusion: These findings suggest that indoor radon exposure contributes considerably to lung cancer, and that reducing indoor radon concentration would be helpful for decreasing the disease burden from lung cancer deaths.

Assessment of Thermal Comfort in a General Hospital in Winter Using Predicted Mean Vote (PMV) (Predicted Mean Vote(PMV)를 이용한 겨울철 종합병원의 실내 온·열 환경의 평가)

  • Lee, Boram;Kim, Jeonghoon;Kim, KyooSang;Kim, Hyejin;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.389-396
    • /
    • 2015
  • Objectives: A hospital is a complex building that serves many different purposes. It has a major impact on patient's well-being as well as on the work efficiency of the hospital staff. Thermal comfort is one of the major factors in indoor comfort. The purpose of this study was to determine thermal comfort in various locations in a hospital. Methods: Various indoor environmental conditions in a general hospital were measured in February 2014. The predicted mean vote (PMV) and carbon dioxide ($CO_2$) concentration were measured simultaneously in the lobby, office, restaurant, and ward. Results: The ward was the most thermally comfortable location (PMV=0.44) and the lobby was the most uncomfortable (PMV = -1.39). However, the $CO_2$ concentration was the highest in the ward (896 ppm) and the lowest in the lobby (572 ppm). The average PMV value was the most comfortable in the ward and the lowest in the lobby. In contrast, for concentration of carbon dioxide, the highest average was in the ward and the lowest in the lobby. Due to air conditioner operation, during operating hours the PMV showed values close to 0 compared to the non-operating time. Correlation between PMV and $CO_2$ differed by location. Conclusion: The PMV and concentration of carbon dioxide of the hospital lobby, office, restaurant and ward varied. The relationship between PMV and carbon dioxide differed by location. Consideration of how to apply PMV and carbon dioxide is needed when evaluating indoor comfort.

$PM3.5/NO_2$ Concentration Ratio in Roadside and Exposure Assessment of Shoes Repairmen in Seoul (서울시 도로변의 $PM3.5/NO_2$ 농도비 및 구두수선대 근로자의 노출평가)

  • 배현주;양원호;김나리;정문호
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.21-30
    • /
    • 2001
  • Vehicles, especially diesel-using, are a major source of airborne particulate matter(PM), nitrogen dioxide($NO_2$) and so on in metropolitan cities such as Seoul. Therefore workers, who are mainly merchants, near roadside may be highly exposed to air pollutants from exhausted emissions of vehicles. This means that occupational type and location can affect the workers'health by exposure to outdoor pollutions of ambient as well as indoor pollutions of working condition, respectively. In this study, we simultaneously measured the PM3.5 and $NO_2$concentrations in indoor and outdoor of shoes repair shops in Seoul, which were generally located at roadside in Korea. Shoes repairmen were highly exposed to PM3.5 and $NO_2$ both indoor and outdoor of repair shops comparing with other sub-population groups. High exposure to air pollutants for shoes repairmen was considered to be outdoor source from exhausted emission of vehicles and indoor source from working condition. The $PM3.5/NO_2$ concentration ratio was $1.17{\pm}$0.59 in roadside, of which ratio was higher 7han ratios of other studies. This result suggested that major air pollutant in Seoul was fine particle. Also, this PM3.5 to $NO_2$ ratio will be used in environmental exposure and risk assessment by estimation of PM3.5 concentration as measuring the only $NO_2$ concentration with small and accurate $NO_2$ passive sampler.

  • PDF

Risk Assessment of Aldehydes and Volatile Organic Compounds in the National Library of Korea Archive (국립중앙도서관 귀중서고 내 알데히드류 및 휘발성유기화합물(VOCs)에 대한 건강위해성평가)

  • Lee, Hye-Won;Lim, Hui Been;Lee, Kwi-Bok;Park, So Yeon;Jeon, Jeong In;Lee, Cheol Min
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.673-682
    • /
    • 2020
  • This study investigates the concentration distribution of aldehydes and volatile organic compounds (VOCs) in the archive of the National Library in Korea and evaluates the health risks to workers from hazardous chemicals. Acetaldehyde had the highest concentration among the nine species of aldehydes present in the archive and the concentration of toluene was the highest among the six species of VOCs. Most of the detected substances showed that their indoor concentrations were higher than the outdoor ones, suggesting the possibility of indoor sources of aldehydes and VOCs. The evaluation of health risks for workers based on these measurement results showed that not all substances were hazardous to the human body. However, considering the possibility of the presence of indoor sources and the potential limits of our study owing its short period, it is necessary to conduct long-term studies on the concentration distribution of indoor pollutants in the archive environment.

Assessment of Inhalation Exposure to Volatile Disinfection By-products Associated with Household Uses of Chlorinated Tap Water (가정에서의 수돗물 사용과 관련된 휘발성 염소소독부산물에 대한 흡입노출 평가)

  • 김희갑;김문숙;윤지현
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.125-133
    • /
    • 2002
  • Volatile disinfection by-products (DBPs) contained in chlorinated tap water are released into household air during indoor activities (showering, cooking, dish -washing, etc.) associated with tap water uses and may cause adverse health effects on humans. Twenty seven subjects were recruited and their homes were visited during the winter of 2002. Tap water, household air, and exhaled breath samples were collected and analyzed for five volatile DBPs (chloroform, bromodichloromethane, dichloroacetonitrile, 1,1 -dichloropropanone and 1,1,1 trichloropropanone). Chloroform was a major DBP found in most samples. Tap water chloroform concentrations were not statistically correlated with its household air concentrations, probably due to individual variability in indoor activities such as showering, cooking, and dish - washing as well as household ventilation. Correlation of breath chloroform concentration with household air chloroform concentration showed its possible use as a biomarker of exposure to household air chloroform. Exposure estimates suggested that inhalation during household stay be a major route of exposure to volatile DBPs and that ingestion of tap water be a trivial contributor to the total exposure in Koreans.

Exposure to Benzene Associated with Gasoline and Environmental Tobacco Smoke (휘발유 및 환경 담배 연기 관련 벤젠 노출)

  • 조완근;문경조
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.319-323
    • /
    • 1999
  • This study was designed to evaluate the exposure to benzene by residents in neighborhoods near a major roadways, by persons waiting buses, and by drivers and service station attendants while refueling. It was confirmed that the outdoor air benzene concentrations near the major roadways were higher than those further away from the sources. However, neither the indoor air nor breath concentrations were different for two specified residential areas. Smoking was confirmed as an important factor for the indoor air benzene levels. Persons waiting buses, drivers and service station attendants were exposed to elevated benzene levels compared to even the residents in neighborhoods near a major roadways. The mean benzene concentration at bus stop was 2.7 to 6.9 times higher than the mean ambient air concentration. The mean benzene concentrations in the breathing zone of drivers and service station attendants were 95 to 160 and 120 to 202 times higher than the mean ambient air concentrations, respectively.

  • PDF

Diurnal Variations of Equilibrium Factor and Unattached fraction of Radon Progeny in Some Houses and Laboratories (가옥 및 실험실내 라돈평형인자, 비 흡착 라돈자손 비율의 일일 변동 특성)

  • Lee, Seung-Chan;Kim, Chang-Kyu;Lee, Dong-Myung;Kang, Hee-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.4
    • /
    • pp.399-408
    • /
    • 2001
  • The variation characteristics of radon concentration, equilibrium equivalent concentration and equilibrium factor in some houses and laboratory buildings have been studied. The variation of equilibrium factor and the unattached fraction of radon progeny with ventilation condition have been also estimated. The averages of radon concentration, equilibrium equivalent concentration and equilibrium factor were $30\;Bq\;m^{-3},\;19.6\;Bq\;m^{-3}$ and 0.65 in seven houses, while $55.0\;Bq\;m^{-3},\;31.9\;Bq\;m^{-3}$ and 0.58 in three laboratory buildings, respectively. The diurnal variation of radon concentration, equilibrium equivalent concentration and equilibrium factor in indoor showed a typical pattern that the radon concentration, equilibrium equivalent concentration and equilibrium factor increased at dawn and morning, while decreased at midday and evening. While the equilibrium factor rate deceased in the indoor environment which was well ventilated, the unattached traction of radon progeny increased. The equilibrium factor was in proportion to air pressure and humidity of indoor, whereas in Inverse proportion to temperature.

  • PDF

Unsteady Analysis of Indoor Radon in Apartment Buildings Considering Finishing Materials and Ventilation (마감재 및 환기를 고려한 공동주택 실내 라돈 농도의 비정상 해석)

  • Cho, Hyun;Pang, Seung-Ki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.24-31
    • /
    • 2019
  • In this paper, we simulated a new apartment building by using radon emission test values from various building materials used as interior finishing materials. The simulations evaluated the radon concentration in the room according to the radon emissions and the ventilations for each type of finishing material (gypsum board, stone, tile and concrete). Overall concrete finish simulation case showed the highest concentration than the case using other materials due to the effect of wall area at the center of each room and the mean radon concentration at 1.5 m above the floor was slightly lower than the mean value at each center. In the case of the porch, pantry and bathroom, the radon concentration was high even when the same materials were used as in the other rooms.

Effect of Removal Efficiency of Formaldehyde by Input Coating Concentration of Photocatalyst - with Study of Standardization of Coating Thickness - (광촉매 코팅농도가 포름알데히드 제거능에 미치는 효과 - 코팅 두께 표준화 연구를 중심으로 -)

  • Park Young G.;Han Man-So
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.51-58
    • /
    • 2005
  • Photocatalytic degradation using $TiO_2$ Particles suspended in a reactor was experimentally performed to degrade the formaldehyde of indoor pollutants. Exponential increase of degradation appears to prove light availability due to the scattering of W light by particles themselves. Comparative removal studies of formaldehyde were done in both cases of dipping and spraying immobilized techniques of $TiO_2$ Particles suspended in solution. Experiments were performed under several different experimental conditions such as initial concentration of formaldehyde, UV intensity and concentration of photocatalysts. Optimal conditions to degrade formaldehyde were obtained under the conditions of $30\;mg/cm^2$ concentration of catalyst and UV intensity of 30 Watt at the distance of 30 cm using immobilized technique by dipping coating.