• Title/Summary/Keyword: indoor and outdoor

Search Result 1,342, Processing Time 0.03 seconds

Variation of Formaldehyde Concentration in Preschool Facilities by Location and Indoor/Outdoor (유아교육시설의 위치 및 실내${\cdot}$실외에 따른 포름알데히드 농도 변화)

  • Yoon , Chung-Sik;Jeong , Jee-Yeon;Yi , Gwang-Yong;Park , Dong-Uk;Park , Doo-Yong
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • This study was performed to investigate airborne formaldehyde concentration in preschool facilities. Arithmetic mean of indoor formaldehyde concentration in urban area was 34.9 ppb(Geometric mean 24.4 ppb) whereas outdoor concentration was 21.5 ppb(GM 11.9 ppb). In rural area, formaldehyde concentrations were 36.4 ppb(GM 28.7 ppb), 4.1 ppb(GM 4.1 ppb), respectively. There is no statistical significance between the formaldehyde concentrations of urban classrooms and those of rural area. We verified that the distribution of airborne formaldehyde concentration was log-normal characteristic using Shapiro and Wilk test. The 6.7% of urban indoor samples was exceeded the domestic standard limit of indoor air quality. From our study and other study, we concluded that the major emission sources of formaldehyde in preschool facilities was in indoor rather than outdoor.

Temperature Changes of Indoor and Outdoor by Grass Planting Block in Planting of Roof Area (잔디(Zoysia japonica Steud)식재블럭에 의한 옥상녹화지에서의 실내외 온도변화)

  • Lee, Sang Tae;Kim, Jin Seon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.54-60
    • /
    • 2004
  • The purpose of this study is to analyzes the effects on planting of roof with planting block and grass in a school building where users actually spend daily life to measure indoor and outdoor temperature changes with existing roof. In case of planting of roof with a summer season, the highest temperature was shown lower about $1620^{\circ}C$ in the outdoor compared to the case of not performing it. On the other hand the lowest temperature was shown higher about $0.7^{\circ}C$ and the highest temperature lower about $1.1^{\circ}C$ in the indoor. In case of planting of roof with a winter season, the lowest temperature was shown higher about $1.712.8^{\circ}C$ compared to the case of not performing it. On the other hand, it was shown higher about $3^{\circ}C$ in the indoor. The results of this study, effects of temperature control was confirmed in the indoor where planting of roof was performed higher about $3^{\circ}C$ for winter season and lower about $1^{\circ}C$ for summer season compared to the case of indoor with existing roof.

Adaptive Cell-Based Index For Moving Objects In Indoor

  • Shin, Soong-Sun;Kim, Gyoung-Bae;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1815-1830
    • /
    • 2012
  • Existing R-tree that is based on a variety of outdoor-based techniques to manage moving objects have been investigated. Due to the different characteristics of the indoor and outdoor, it is difficult to management of moving object using existed methods in indoor setting. We propose a new index structure called ACII(adaptive Cell-based index for Indoor moving objects) for Indoor moving objects. ACII is Cell-based access structure adopting an overlapping technique. The ACII refines cells adaptively to handle indoor regional data, which may change its locations over time. The ACII consumed at most 30% of the space required by R-tree based methods, and achieved higher query performance compared with r-tree based methods.

Walking/Non-walking and Indoor/Outdoor Cognitive-based PDR/GPS/WiFi Integrated Pedestrian Navigation for Smartphones

  • Eui Yeon Cho;Jae Uk Kwon;Seong Yun Cho;JaeJun Yoo;Seonghun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.399-408
    • /
    • 2023
  • In this paper, we propose a solution that enables continuous indoor/outdoor positioning of smartphone users through the integration of Pedestrian Dead Reckoning (PDR) and GPS/WiFi signals. Considering that accurate step detection affects the accuracy of PDR, we propose a Deep Neural Network (DNN)-based technology to distinguish between walking and non-walking signals such as walking in place. Furthermore, in order to integrate PDR with GPS and WiFi signals, a technique is used to select a proper measurement by distinguishing between indoor/outdoor environments based on GPS Dilution of Precision (DOP) information. In addition, we propose a technology to adaptively change the measurement error covariance matrix by detecting measurement outliers that mainly occur in the indoor/outdoor transition section through a residual-based χ2 test. It is verified through experiments on a testbed that these technologies significantly improve the performance of PDR and PDR/GPS/WiFi fingerprinting-based integrated pedestrian navigation.

Assessment of Formaldehyde Concentration in Indoor and Outdoor Environments of Schools in Incheon (인천지역 일부 학교의 실내 및 대기 중 포름알데히드 농도 평가)

  • Jeung, Yeon-Hee;Choi, Sang-Jun
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • This study evaluated formaldehyde concentration in classrooms and on roofs at 4 elementary schools, 3 middle schools and 3 high schools in Incheon City. These schools were chosen based on their surrounding environments that included industrial site, landfill, railway, 8-lane road and harbor. Indoor concentration ranged between 4.65 and $56.25{\mu}g/m^3$, while that of outdoor concentration was $1.23{\sim}10.22{\mu}g/m^3$, both of which were below $100{\mu}g/m^3$, a formaldehyde criterion stipulated by the School Health Act. Indoor concentration was higher than outdoor concentration by $1.4{\sim}5.9$ times, and there was a positive correlation between indoor and outdoor formaldehyde concentrations (R=0.49). As for indoor concentration, multi-use practice rooms had an average 2.8 times higher than that of usual classrooms with a statistically significant difference (p<0.01). Indoor formaldehyde concentration had a positive correlation with the construction year (R=0.55). The school close to the industrial complex had the highest ambient formaldehyde concentration, followed by the one near a landfill. The formaldehyde concentration in school in the vicinity of the industrial complex was twice or more than that of the school located other site. In conclusion, this study suggests that it is crucial to consider surrounding environments in selecting school sites, as it can influence ambient air contamination, as well as using construction material that emit less formaldehyde, in order to protect the health of students, teachers and school staff.

Influence of Walking Capacity and Environment on the Outcomes of Short- and Long-distance Walking Velocity Tests in Individuals with Chronic Stroke (보행 능력과 환경이 만성 뇌졸중 환자의 단거리 및 장거리 보행속도검사 결과에 미치는 영향)

  • Jeong, Hye-rim;Oh, Duck-won
    • Physical Therapy Korea
    • /
    • v.24 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Background: The method of measuring the walking function of patients with chronic stroke differs depending on patients walking capability and environmental conditions. Objects: This study aimed to demonstrate the influences of walking capacity and environmental conditions on the results of short- and long-distance walk tests in patients with chronic stroke. Methods: Forty patients with chronic stroke volunteered for this study, and allocated to group-1 (<.4m/s, household walking, $n_1=13$), group-2 (.4~.8m/s, limited community ambulation, $n_2=16$), and group-3 (>.8m/s, community ambulation, $n_3=11$) according to their walking capacity. The 10-meter walk test (10MWT) and 6-min walk tests, (6MWT) were used to compare the short- and long-distance walk tests results, which were randomly performed under indoor and outdoor environmental conditions. Results: The comparison of the results obtained under the indoor and outdoor conditions revealed statistically significant differences between the groups in the 6MWT and 10MWT (p<.05). Post-hoc tests' results showed significant differences between groups-1 and -2 and between groups-1 and -3 in the 10MWT, and between group-1 and -3 in the 6MWT. Furthermore, in group-2 the 10MWT and 6MWT results significantly differed between the indoor and outdoor conditions, and the values measured under the indoor and outdoor conditions significantly differed between 10MWT and 6MWT (p<.05). Group-3 showed a significant difference in 10MWT results between the indoor and outdoor conditions (p<.05). Conclusion: These findings suggest that the results of the short- and long-distance walk tests may differ depending on the walking capacity of patients with chronic stroke and the environmental condition under which the measurement is made, and these effects were greatest for the patients with the limited community ambulation capacity.

Personal Exposure Level of Nitrogen Dioxide in an Industrial Area (일부 공단지역 내 이산화질소에 의한 개인노출 농도에 관한 연구)

  • Jeon, Yong-Teak;Yang, Won-Ho;Cho, Tea-Jin;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • This study was conducted in industrial area. The level of nitrogen dioxide was measured indoor, outdoor, work and personal in an study area within 5 km from source of pollution and control area 15 km farther from August, 2006 to September. The followings are the summary of this research. The concentration of the indoor and the outdoor $NO_2$ levels in the industrial area are 18.41$\pm$6.35 ppb, 18.51$\pm$3.26 ppb each, and the indoor/outdoor concentration rate is 0.99. The concentration of $NO_2$ in the workplace is 18.59$\pm$10.16 ppb, and the individual exposure rate is 18.80$\pm$5.71 ppb. The concentration of the indoor and the outdoor $NO_2$ levels control area are 12.57$\pm$3.82 ppb, 9.68$\pm$2.16 ppb each, and the indoor/outdoor concentration rate is 1.33. The personal exposure rate is 14.49$\pm$10.06 ppb. The residents of the each area and those of the comparative area spend 80.9% and 76.9% each their time in the indoor. It shows they spend most of their time in indoor. The predictions of the individual exposure rates in the industrial area and the comparative area are 15.10$\pm$6.14 ppb and 10.52$\pm$3.82 ppb each, The concentration levels measured by passive sampler are 18.80$\pm$5.71 ppb and 14.49$\pm$10.34 ppb each. The result of the research is the analysis of the personal exposure rate in indoor, outdoor and workplace of industrial area. This research may bo used as a basic data to manage and to establish the plan for $NO_2$ gas of the industrial area.

Comparison of Five Pollutant Levels between Inside and Outside Homes (主要 汚染物質에 대한 家庭에서의 室內外 濃度比較)

  • 金潤信
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.27-32
    • /
    • 1987
  • As part of an air pollution epidemiological study of asthmatics residing in the Houston area, an air monitoring system provided data on the indoor and outdoor measurements of major pollutant gases sampled at selected residences during May ~ October 1981. Continuously monitored pollutant gases included sulfur dioxide ($SO_2$), nitrogen dioxide($NO_2$), nitric oxide(NO), carbon monoxide(CO), and ozone($O_3$). Outdoor levels for each pollutant were compared with their indoor levels(bedroom, kitchen, living room). Mean concentrations of each pollutant in the kitchen, and living room exceeded the mean levels outside except for ozone, while average bedroom levels for all gases except for $O_3$ and $NO_2$ were found higher than the corresponding outside levels. Indoor/ outdoor ratios for $SO_2$, NO, and CO were 1.8 ~ 2.7 times the outdoor levels, but indoor/ outdoor ratios for $NO_2$ and $O_3$ were 0.99 and 0.06, respectively. The impact of several important household characteristics (type of cooking fuel and cigarette smoking) on the indoor levels for these gases is evaluated.

  • PDF

An Analysis about Recognition of Indoor Air Quality of Workers at Dental Clinics in Jeollanamdo Area

  • Choi, Mi-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.11
    • /
    • pp.137-142
    • /
    • 2018
  • The purpose of this study is to contribute to the improvement of indoor air quality management in dental clinic by investigating the level of indoor air quality recognition among dental clinic workers. The questionnaire survey was conducted for about 4 weeks from May 20 to June 20, 2018 in dental clinics located in Jeollanamdo area and 143 were used as the analysis data. The method of indoor air quality management in dental clinic was preferred to "natural ventilation" method and the number of natural ventilation was 1 to 2 times per day and the results of survey on indoor environment satisfaction showed that satisfaction level was lowest in noise and smell items. The types of subjective symptoms experienced by workers working at dental clinics are "cough", "eye burn", and "headache" and a survey on the degree of the relationship between subjective symptoms and indoor air quality showed that 94.4% (135) of respondents answered "very relevant" and "slightly related". As a result of multiple regression analysis, the variables affecting the indoor air quality satisfaction of the dental clinic staff were analyzed as the items such as lighting, noise, main work, number of patients, comparing indoor and outdoor air quality and among them, "comparing indoor and outdoor air quality" was analyzed as having a great influence. To improve the indoor air quality satisfaction of dental clinic worker adequate ventilation, designate the person responsible for the indoor air quality management and periodic measurement efforts will be necessary.

Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.