• Title/Summary/Keyword: indoor air environment

Search Result 1,059, Processing Time 0.037 seconds

A Study on the Evaluation of Indoor Air Environment in Super High-Rise Dwelling House (都市 超高層 住居建築의 室內空氣環境의 評價에 관한 硏究)

  • Park, Mi-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.119-125
    • /
    • 2002
  • The concept of dwelling space is tend to be changed not only to have reasonable mobility but also to have high quality of indoor air with psychologicaa satisfaction and comfortable. Moreover, recent constructed buildings have a big problem because of exhausted pollution gas and particles from building materials. More serious problem occurs from its high air tightness reducing the ventilation for saving the energy and superior adiabatic insulators to have high heat efficiency. Indoor air quality in super high-rise dwelling house was investigated by measuring pollutants such as $CO_2,=;CO,\;MO_2,\;R_n,\;TSP,\;PM_{10}$, HCHO, Offensive ordor. Subjective evaluation of residential environment is processed for the inhabitants who live in research space by testing environmental load in accordance with environment morphology, exterior environmental factor and post occupancy correlation and influence of attention.

Characterization and Assessment of Indoor Air Quality in Newly Constructed Apartments -Volatile Organic Compounds and Formaldehyde- (신축공동주택의 실내공기질 특성 및 평가 -휘발성 유기화합물 및 포름알데히드 중심으로-)

  • Sim, Sang-Hyo;Kim, Yoon-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.275-281
    • /
    • 2006
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time indoors. Especially exposure to indoor air can potentially pose a greater threat than exposure to ambient air when indoor environments have sources of contaminants. In this study, volatile organic compounds (VOCs) and formaldehyde (HCHO) within newly constructed apartment have been determined in 27 houses of apartment in Seoul from December 2004 to March 2005. The measured indoor air pollutants were HCHO, volatile organic compounds including benzene, toluene, styrene, xylene, ethylbenzene and sampled on the standard method of Ministry of Environment in Korea. The indoor levels for benzene, xylene, toluene, ethylbenzene, styrene, and HCHO have significant increase trend after 5 hours closing of windows and doors. Levels of measured air pollutants concentrations between living rooms and bedrooms have not shown significant difference. Spearman correlation coefficient among the measured air pollutants ranged from 0.303 to 0.946, indicating similar source in building materials.

Estimation of Source Emission Rate on Volatile Organic Compounds and Formaldehyde Using Indoor Air Quality Modeling in New Apartment (실내공기질 모델을 이용한 신축공동주택의 VOCs 및 HCHO 배출량 추정)

  • Sim, Sang-Hyo;Kim, Yoon-Shin;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.929-933
    • /
    • 2006
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time Indoors. Especially when indoor environments have sources of contaminants, exposure to in-door air can potentially pose a greater threat than exposure to ambient air. In this study, estimations of volatile organic compounds and formaldehyde omission rate in indoor environments of new apartments were carried out using mass balance model in indoor environment, because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. Considering the estimated emission rate of volatile organic compounds and formaldehyde, it Is suggested that new apartment should be designed and constructed in the aspect of using construction materials to emit low hazardous air pollutants.

Application of Indoor Air Modelling for Using Health Risk Assessment in Environmental Impact Assessment (환경영향평가에서 건강위해성평가 기법을 이용하기 위한 실내공기 모델링 적용)

  • Yang, Won-Ho;Son, Bu-Soon;Park, Jong-An;Kim, Im-Soon;Han, Sang-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.211-221
    • /
    • 2001
  • Recognizing interaction between the environment and humans, the EIA(environmental impact assessment) movement has sought to promote more environmentally sound and informed decisions for the sake of human welfare. Therefore, most EIA programs require the consideration of human health impacts. Yet relatively few EIA documents adequately address those impacts. This study was carried out to investigate the role of EIA for reuniting the environment and human health, for preventing and reducing significant health risks, and for improving human health impact assessment by means of risk assessment. Risk assessment consists of 4 components; hazard identification, dose-response assessment, exposure assessment and risk characterization. Since most people spent their times in indoor, indoor air quality modelling can be used in exposure assessment and risk assessment. In this study, indoor $NO_2$ concentration and personal $NO_2$ exposure were estimated by Box Model using mass balance equation and time weighted average, respectively. The estimated indoor $NO_2$ concentration and the personal $NO_2$ exposure were compared by those measured, respectively. Subsequntly, health effect was assessed with these results. Consequently, exposure assessment and risk assessment using indoor air quality model may be considered to be applicable to EIA.

  • PDF

Efficiency of Removal for PM10 and $NO_2$ by Air Cleaner in Residential Indoor Environment with Monte-Carlo Simulation (확률론적 모의실험을 이용한 공기청정기의 실내공기중 PM10과 $NO_2$ 제거효율에 관한 연구)

  • Lee , Cheol-MIn;Kim , Yoon-Shin;Lee , Tae-Hyung;Kim , Jong-Cheol;Kim , Jung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.3
    • /
    • pp.221-229
    • /
    • 2004
  • We estimated decreasing rate of indoor air pollutants which are PM10 and $NO_2$ by the air cleaner in indoor environment. This study respectively examined concentration of PM10 and $NO_2$ two times in 34 sites located in Seoul and Kyung-gi Do from April to September in 2003. Sectional period was respectively divided for operating the air cleaner and non-operating the air cleaner. Moreover, questionnaire was executed to grasp physical characteristic of objective building and residential characteristic of residents by using method of self-entry. There was a trend that concentration of PM10 and $NO_2$ separated number of residents during operating period respectively decreased among indoor air. According to the existence of smoker in indoor, both concentration of PM10 and $NO_2$ during operating period decreased in each case, and according to existence of pets, both cases decreased concentration of pollutants by operating the air cleaner. We used Monte-Calro simulation to remove uncertainty and identify efficiency of eliminated pollutants such as PM10 and $NO_2$ by the air cleaner. Average efficiency of removal for PM10 and $NO_2$ were 61.84${\pm}$23.04% and 48.67${\pm}$18.03% respectively.

A Study on the Actual Conditions and Responses of Indoor Climate Control Elements chosen by Inhabitants through Questionnaire - Focused in Gwangju City- (실내 환경조절 기기에 대한 거주자 의식 실태조사 연구 -광주광역시를 중심으로-)

  • Song, Min-Jeong;Jang, Gil-Soo
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.73-80
    • /
    • 2007
  • Indoor climate control equipments is used to make the indoor environment more comfortable when indoor condition is not satisfactory to inhabitants. In this study, which instrument is preferred to control indoor climate and which is not preferred were surveyed with questionnaire. With this result, the needs of dwellers and wanting performance of housing could be revealed. Results are followings 1) The satisfaction ratio and equipment possession ratio of apartment houses' is higher than that of detached dwelling's 2) It is recognized for inhabitants that air cleaner is the mostly used equipment and best equipment for indoor comfort. 3) Electronic fomentation mat is recognized as the most problematic equipment for securing inhabitant's comfort. And air conditioner is considered negative for 60% of responser's. As grow older, this trend is increasing.

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

A Numerical Analysis on Forced Ventilation using Indoor Air Cleaner in an Apartment House (아파트주택에 있어서 실내공기청정기에 의한 환기의 수치해석)

  • 고재윤;김일겸;최병훈;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.217-223
    • /
    • 2001
  • There exist a number of approaches which can evaluate ventilation and indoor air quality. The measurement and analysis of indoor carbon dioxide concentrations can be useful for evaluating indoor air quality and ventilation. This paper describes a numerical analysis of carbon dioxide concentrations for evaluating indoor air quality and ventilation and the factors the need to be considered in their use. The conditions of this numerical analysis are tow types of positions and inlet velocities of ventilation system in a two-dimensional model of an apartment house. The simulation results could be used as a base data for further analysis for ventilation design of other industrial processes producing a proper ventilation system for a healthier and more comfortable environment in a building.

  • PDF

A Study on Concentration of Volatile Organic Compounds in Newly-Apartment House by Measurement (실측을 통한 신축공동주택의 주요 VOCs 물질 농도에 관한 연구)

  • Kim, Chang-Nam;Kim, Young-Kyoung;Lee, Sung-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1220-1224
    • /
    • 2008
  • Because of the high airtightness and insulation of the building, indoor environment has been largely polluted resulted from insufficient ventilation and occurrence of new air pollutant. These factors have made worse indoor air quality and caused symptoms of the SHS(Sick House Syndrome), MCS(Multi Chemical Sensitivity). The purpose of this study is to present the fundamental strategies for improving the Indoor Air Quality(IAQ) in newly-constructed apartment buildings. To investigate the concentration of indoor air pollutants such as Formaldehyde and VOCs, the field measurement were conducted.

  • PDF

A Structural Analysis between Comfort Feeling and Sensing in Indoor Environment Using Fuzzy Inference (퍼지추론을 이용한 실내환경 쾌적감성과 감각과의 구조 분석)

  • Kim, Jin;Jo, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • There are various kinds of good feelings in indoor environment such as comfort, pleasure, delight, refreshment, geniality, etc. Each feeling is interrelated with other complex elements of senses such as warmth, coldness, calmness, clearness, brightness, etc. In this paper, we described what is good feeling in indoor environment, and developed elements of good feelings using Emotion & Sensibility engineering approach. Resultant elements of good feelings were "comfort," "refreshment," and "freshness." Secondary, we investigated the relationships of these elements with certain elements of senses. "Comfort" is related with "warmth, calmness, brightness, and very clearness in indoor air." "Refreshment" and "freshness" are related with "coldness, moderately calmness, very brightness, and very clearness in indoor air." The relationships were formulated as a fuzzy model. By applying human intuition to this model, we could determine physical ranges of "comfort, refreshment, and freshness."

  • PDF