• Title/Summary/Keyword: individual tree model

Search Result 97, Processing Time 0.027 seconds

Developing Library Tour Course Recommendation Model based on a Traveler Persona: Focused on facilities and routes for library trips in J City (여행자 페르소나 기반 도서관 여행 코스 추천 모델 개발 - J시 도서관 여행을 위한 시설 및 동선 중심으로 -)

  • Suhyeon Lee;Hyunsoo Kim;Jiwon Baek;Hyo-Jung Oh
    • Journal of Korean Library and Information Science Society
    • /
    • v.54 no.2
    • /
    • pp.23-42
    • /
    • 2023
  • The library tour program is a new type of cultural program that was first introduced and operated by J City, and library tourists travel to specialized libraries in the city according to a set course and experience various experiences. This study aims to build a customized course recommendation model that considers the characteristics of individual participants in addition to the existing fixed group travel format so that more users can enjoy the opportunity to participate in library tours. To this end, the characteristics of library travelers were categorized to establish traveler personas, and library evaluation items and evaluation criteria were established accordingly. We selected 22 libraries targeted by the library travel program and measured library data through actual visits. Based on the collected data, we derived the characteristics of suitable libraries and developed a persona-based library tour course recommendation model using a decision tree algorithm. To demonstrate the feasibility of the proposed recommendation model, we build a mobile application mockup, and conducted user evaluations with actual library users to identify satisfaction and improvements to the developed model.

A Study on Empirical Model for the Prevention and Protection of Technology Leakage through SME Profiling Analysis (중소기업 프로파일링 분석을 통한 기술유출 방지 및 보호 모형 연구)

  • Yoo, In-Jin;Park, Do-Hyung
    • The Journal of Information Systems
    • /
    • v.27 no.1
    • /
    • pp.171-191
    • /
    • 2018
  • Purpose Corporate technology leakage is not only monetary loss, but also has a negative impact on the corporate image and further deteriorates sustainable growth. In particular, since SMEs are highly dependent on core technologies compared to large corporations, loss of technology leakage threatens corporate survival. Therefore, it is important for SMEs to "prevent and protect technology leakage". With the recent development of data analysis technology and the opening of public data, it has become possible to discover and proactively detect companies with a high probability of technology leakage based on actual company data. In this study, we try to construct profiles of enterprises with and without technology leakage experience through profiling analysis using data mining techniques. Furthermore, based on this, we propose a classification model that distinguishes companies that are likely to leak technology. Design/methodology/approach This study tries to develop the empirical model for prevention and protection of technology leakage through profiling method which analyzes each SME from the viewpoint of individual. Based on the previous research, we tried to classify many characteristics of SMEs into six categories and to identify the factors influencing the technology leakage of SMEs from the enterprise point of view. Specifically, we divided the 29 SME characteristics into the following six categories: 'firm characteristics', 'organizational characteristics', 'technical characteristics', 'relational characteristics', 'financial characteristics', and 'enterprise core competencies'. Each characteristic was extracted from the questionnaire data of 'Survey of Small and Medium Enterprises Technology' carried out annually by the Government of the Republic of Korea. Since the number of SMEs with experience of technology leakage in questionnaire data was significantly smaller than the other, we made a 1: 1 correspondence with each sample through mixed sampling. We conducted profiling of companies with and without technology leakage experience using decision-tree technique for research data, and derived meaningful variables that can distinguish the two. Then, empirical model for prevention and protection of technology leakage was developed through discriminant analysis and logistic regression analysis. Findings Profiling analysis shows that technology novelty, enterprise technology group, number of intellectual property registrations, product life cycle, technology development infrastructure level(absence of dedicated organization), enterprise core competency(design) and enterprise core competency(process design) help us find SME's technology leakage. We developed the two empirical model for prevention and protection of technology leakage in SMEs using discriminant analysis and logistic regression analysis, and each hit ratio is 65%(discriminant analysis) and 67%(logistic regression analysis).

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

An Adaptive Learning System based on Learner's Behavior Preferences (학습자 행위 선호도에 기반한 적응적 학습 시스템)

  • Kim, Yong-Se;Cha, Hyun-Jin;Park, Seon-Hee;Cho, Yun-Jung;Yoon, Tae-Bok;Jung, Young-Mo;Lee, Jee-Hyong
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.519-525
    • /
    • 2006
  • Advances in information and telecommunication technology increasingly reveal the potential of computer supported education. However, most computer supported learning systems until recently did not pay much attention to different characteristics of individual learners. Intelligent learning environments adaptive to learner's preferences and tasks are desired. Each learner has different preferences and needs, so it is very crucial to provide the different styles of learners with different learning environments that are more preferred and more efficient to them. This paper reports a study of the intelligent learning environment where the learner's preferences are diagnosed using learner models, and then user interfaces are customized in an adaptive manner to accommodate the preferences. In this research, the learning user interfaces were designed based on a learning-style model by Felder & Silverman, so that different learner preferences are revealed through user interactions with the system. Then, a learning style modeling is done from learner behavior patterns using Decision Tree and Neural Network approaches. In this way, an intelligent learning system adaptive to learning styles can be built. Further research efforts are being made to accommodate various other kinds of learner characteristics such as emotion and motivation as well as learning mastery in providing adaptive learning support.

  • PDF

The detection of cavitation in hydraulic machines by use of ultrasonic signal analysis

  • Gruber, P.;Farhat, M.;Odermatt, P.;Etterlin, M.;Lerch, T.;Frei, M.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • This presentation describes an experimental approach for the detection of cavitation in hydraulic machines by use of ultrasonic signal analysis. Instead of using the high frequency pulses (typically 1MHz) only for transit time measurement different other signal characteristics are extracted from the individual signals and its correlation function with reference signals in order to gain knowledge of the water conditions. As the pulse repetition rate is high (typically 100Hz), statistical parameters can be extracted of the signals. The idea is to find patterns in the parameters by a classifier that can distinguish between the different water states. This classification scheme has been applied to different cavitation sections: a sphere in a water flow in circular tube at the HSLU in Lucerne, a NACA profile in a cavitation tunnel and two Francis model test turbines all at LMH in Lausanne. From the signal raw data several statistical parameters in the time and frequency domain as well as from the correlation function with reference signals have been determined. As classifiers two methods were used: neural feed forward networks and decision trees. For both classification methods realizations with lowest complexity as possible are of special interest. It is shown that two to three signal characteristics, two from the signal itself and one from the correlation function are in many cases sufficient for the detection capability. The final goal is to combine these results with operating point, vibration, acoustic emission and dynamic pressure information such that a distinction between dangerous and not dangerous cavitation is possible.

Context-Awareness Modeling Method using Timed Petri-nets (시간 페트리 넷을 이용한 상황인지 모델링 기법)

  • Park, Byung-Sung;Kim, Hag-Bae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.354-361
    • /
    • 2011
  • Increasing interest and technological advances in smart home has led to active research on context-awareness service and prediction algorithms such as Bayesian Networks, Tree-Dimensional Structures and Genetic prediction algorithms. Context-awareness service presents that providing automatic customized service regarding individual user's pattern surely helps users improve the quality of life. However, it is difficult to implement context-awareness service because the problems are that handling coincidence with context information and exceptional cases have to consider. To overcome this problem, we proposes an Intelligent Sequential Matching Algorithm(ISMA), models context-awareness service using Timed Petri-net(TPN) which is petri-net to have time factor. The example scenario illustrates the effectiveness of the Timed Petri-net model and our proposed algorithm improves average 4~6% than traditional in the accuracy and reliability of prediction.

Performance Comparison of Machine Learning based Prediction Models for University Students Dropout (머신러닝 기반 대학생 중도 탈락 예측 모델의 성능 비교)

  • Seok-Bong Jeong;Du-Yon Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • The increase in the dropout rate of college students nationwide has a serious negative impact on universities and society as well as individual students. In order to proactive identify students at risk of dropout, this study built a decision tree, random forest, logistic regression, and deep learning-based dropout prediction model using academic data that can be easily obtained from each university's academic management system. Their performances were subsequently analyzed and compared. The analysis revealed that while the logistic regression-based prediction model exhibited the highest recall rate, its f-1 value and ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) value were comparatively lower. On the other hand, the random forest-based prediction model demonstrated superior performance across all other metrics except recall value. In addition, in order to assess model performance over distinct prediction periods, we divided these periods into short-term (within one semester), medium-term (within two semesters), and long-term (within three semesters). The results underscored that the long-term prediction yielded the highest predictive efficacy. Through this study, each university is expected to be able to identify students who are expected to be dropped out early, reduce the dropout rate through intensive management, and further contribute to the stabilization of university finances.

Data Mining Tool for Stock Investors' Decision Support (주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구)

  • Kim, Sung-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.472-482
    • /
    • 2012
  • There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.

Estimation of Stem Taper Equations and Stem Volume Table for Phyllostachys pubescens Mazel in South Korea (맹종죽의 수간곡선식 및 수간재적표 추정)

  • Eun-Ji, Bae;Yeong-Mo, Son;Jin-Taek, Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.622-629
    • /
    • 2022
  • The study aim was to derive a stem taper equation for Phyllostachys pubescens, a type of bamboo in South Korea, and to develop a stem volume table. To derive the stem taper equation, three stem taper models (Max & Burkhart, Kozak, and Lee) were used. Since bamboo stalks are hollow because of its woody characteristics, the outer and inner diameters of the tree were calculated, and connecting them enabled estimating the tree curves. The results of the three equations for estimating the outer and inner diameters led to selection of the Kozak model for determining the optimal stem taper because it had the highest fitness index and lowest error and bias. We used the Kozak model to estimate the diameter of Phyllostachys pubescens by stem height, which proved optimal, and drew the stem curve. After checking the residual degree in the stem taper equation, all residuals were distributed around "0", which proved the suitability of the equation. To calculate the stem volume of Phyllostachys pubescens, a rotating cube was created by rotating the stem curve with the outer diameter at 360°, and the volume was calculated by applying Smalian's method. The volume of Phyllostachys pubescens was calculated by deducting the inner diameter calculated volume from the outer diameter calculated volume. The volume of Phyllostachys pubescens was only 20~30% of the volume of Larix kaempferi, which is a general species. However, considering the current trees/ha of Phyllostachys pubescens and the amount of bamboo shoots generated every year, the individual tree volume was predicted to be small, but the volume/ha was not very different or perhaps more. The significance of this study is the stem taper equation and stem volume table for Phyllostachys pubescens developed for the first time in South Korea. The results are expected to be used as basic data for bamboo trading that is in increasing public and industrial demand and carbon absorption estimation.