• Title/Summary/Keyword: individual irrigation system

Search Result 18, Processing Time 0.035 seconds

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM PART I

  • Uenaka, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.757-763
    • /
    • 2000
  • It is fundamental to control individual condition of every seedling. Automatic individual control is used by data control and analysis at on-line. As a result the best condition system was build without all waste. This system uses one of new technology irrigation system. This irrigation system supply accurate quantity of nutrient solution in the shortest time. The system named the upward injection irrigation system. First of all it is necessary to be considered whether the soil is proper or improper for upward injection irrigation system. It is important that root absorb nutrient solution as fast as possible. The ability of spreading, storing water, contamination of environment and cost were considered when choose the medium. The soil of organic culture is developed recently. The soil consists of paper pulp and vermiculite. The new soil is more suitable than ordinary medium for growing plant because this medium is made of paper pulp. The ability of store and spread of water is it's feature. We can make paper tray of this paper pulp's raw material. It is possible that pulp tray replaced plastic tray. The original plug tray of growing seedling system can make which consist of pulp medium and pulp tray. In this study, it was examined whether the plug seedling of paper pulp medium grow with upward injection irrigation system in this seedling plant system. At the same time, examine ability of store and spread of water and how to grow plant on the paper pulp medium.

  • PDF

Institutional Improvement of Irrigation Management System in Korea

  • Chung, Sang-Ok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.74-82
    • /
    • 2002
  • There are two major operation and management (O & M) systems in Korea, one by the Korea Agricultural and Rural Infrastructure Corporation (KARICO), a government corporation, and the other by non-KARICO, which includes Irrigation associations (IAs) and individual farmers under the supervision of city or county authorities. Main issues and constraints in the irrigation facility management are: (1) The dual system of the irrigation water management system; management by KARICO and that by IAs, and (2) From the commencement of KAICO in 2000, farmers were exempted from water charge. This is opposite to the international trend, which follows' user pay principle: Main specific strategies to improve irrigation management system are: (1) Introduction of water metering for water charge as well as water conservation, (2) Adoption of demand-oriented irrigation rather than supply-oriented to reduce waste of water, (3) To augment farmer's participation by forming water user associations, (4) To maintain consistency of government policy, (5) To promote roles of local governments, and (6) To reestablish the role of KARICO.

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

A Study for the Automatic Control System in Greenhouse Using Microcomputer(IV) -Application of a Controller for the Automatic Control System- (마이크로컴퓨터에 의한 시설재배의 자동화에 관한 연구(IV) -자동화 시스템용 종합제어기의 응용-)

  • 김진현;김철수
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.288-298
    • /
    • 1995
  • In greenhouse vegetable, the automatic control in cultivating environment has been projected as a national business ; especially a countermeasure against the settlement of UR negotiation. Because it makes possible to manage a large greenhouse with family-hands and to expect the betterment of quality and the increasement of harvest in crops. In the course of carrying the workout, however, there are many problems with the overall control system with computers as well as the individual systems for environment control because of hardware and software problems : especially the shortage of data for development of the system is most serious. Among the many problems for development of the automatic control system, the automations of irrigation, liquefied fertilizer and chemical solution, mixing and ventilation, etc and the development of the general automatic controller system for environment control in greenhouse are studied, which requires a lot of tabors. The results are summarized as follows ; 1. In moisture control by the soil moisture meter, the error was shown 10 % in the beginning irrigation point and 19 % in the stop irrigation point. 2. The supply of liquefied fertilizers with the irrigation system was excellent by setting the operating time and the mixing ratio. 3. The developed chemical spraying system was operated well, but not perfect in nozzle positions. 4. The cucumber was cultivated properly with the trickle irrigation system. 5. The developed controller for the automatic control system in greenhouse was remarkable in the part of hardware, but more researches are needed in the part of software.

  • PDF

Modelling Pasture-based Automatic Milking System Herds: Grazeable Forage Options

  • Islam, M.R.;Garcia, S.C.;Clark, C.E.F.;Kerrisk, K.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.703-715
    • /
    • 2015
  • One of the challenges to increase milk production in a large pasture-based herd with an automatic milking system (AMS) is to grow forages within a 1- km radius, as increases in walking distance increases milking interval and reduces yield. The main objective of this study was to explore sustainable forage option technologies that can supply high amount of grazeable forages for AMS herds using the Agricultural Production Systems Simulator (APSIM) model. Three different basic simulation scenarios (with irrigation) were carried out using forage crops (namely maize, soybean and sorghum) for the spring-summer period. Subsequent crops in the three scenarios were forage rape over-sown with ryegrass. Each individual simulation was run using actual climatic records for the period from 1900 to 2010. Simulated highest forage yields in maize, soybean and sorghum- (each followed by forage rape-ryegrass) based rotations were 28.2, 22.9, and 19.3 t dry matter/ha, respectively. The simulations suggested that the irrigation requirement could increase by up to 18%, 16%, and 17% respectively in those rotations in El-Nino years compared to neutral years. On the other hand, irrigation requirement could increase by up to 25%, 23%, and 32% in maize, soybean and sorghum based rotations in El-Nino years compared to La-Nina years. However, irrigation requirement could decrease by up to 8%, 7%, and 13% in maize, soybean and sorghum based rotations in La-Nina years compared to neutral years. The major implication of this study is that APSIM models have potentials in devising preferred forage options to maximise grazeable forage yield which may create the opportunity to grow more forage in small areas around the AMS which in turn will minimise walking distance and milking interval and thus increase milk production. Our analyses also suggest that simulation analysis may provide decision support during climatic uncertainty.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

A Study on the Surface Erosion by the Development of Cropland on the Hillslope in the West Coast Area of North Korea Using Quick Bird Satellite Images (Quick Bird 영상을 이용한 북한 서해안 구릉지 개간에 따른 지표 침식 분석)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul;Han, Uk
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.4
    • /
    • pp.453-462
    • /
    • 2005
  • The study deals with surface erosion patterns due to the development of cropland toward hillslope and hilltop in the Oncheon-gun, pyeongbuk province and Nampo city of west coast area in the North Korea, using Quick Bird satellite images with 60cm resolution. In North Korea, for national economic difficult after 1980 year, newly developed croplands have been along the gentle hillslope, in which it is possible for individual man power different from the tideland which needs large scaled man-power and equipment. The new croplands are named Darakbat(terraced farm with embankment) and Bitalbat(titled farm developed on the original hill slope), neighboring with orchard and grouped settlement in lower valley. For supplying agricultural water, irrigation ditches and temporal crop storages have been constructed, connecting Darakbat, Bitalbat and orchard. These cropland developments have caused surface erosion composed of 3 types such as pit, linear and headward erosion, together with rill and gully. Owing to poor management of cropland and irrigation system, topsoil erosion and, collapse and sedimentation of ditch and pool, caused the decrease of agricultural productivity. These analysis using Quick Bird images can suggest original raw data about geographical facts on North Korea agriculture and help to recover their agricultural system and plan future national unified land.

  • PDF

A Study on the Status of Use and Value of 'Saemi' in Sacheon Alluvial Fan (사천 선상지 '새미'의 이용 실태 및 가치 고찰)

  • Kim, Dohyun;Jeong, Myeong Cheol;Seo, Ki Chun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.4
    • /
    • pp.85-95
    • /
    • 2022
  • This study is about the story of 'Saemi', existing in the Sacheon Alluvial fan area. Saemi is a local word for Dumbeong, which is the traditional water irrigation facilities in this area that could be formed according to the geographical characteristics of a Alluvial fan site. In the meantime, although Saemi has been an important source of water, related research has been mainly done from an ecological point of view. Accordingly, the researcher paid attention to the functional aspects of Saemi itself, grasped its location, distribution status, and usage including the construction method, and considered its intrinsic value through classification and characteristic analysis of Saemi. As a result of five field surveys from September 2021 to October 2022, 129 Saemies remained in the Sacheon alluvial fan area. According to the structure and shape, Saemi could be divided into basic type, complex type, and buried type. The basic type was subdivided into bucket-type and stairs-type along with the complex type, and the buried type was subdivided into all buried-type and some buried-type. Saemies were mainly distributed at the distal end of the Sacheon alluvial fan site, individual Saemies were built on farmland, and common Saemies were usually built along roadsides adjacent to villages. The reason why the Saemies are concentrated at the distal end is the geographical characteristics of the alluvial fan where the water underflows. Saemi was an important multifunctional water supply source equivalent to the main water source for people at the distal end of the pond who did not receive a stable supply of water from the reservoir. Saemi was at the center of the underground water irrigation network agricultural system in the Sacheon alluvial fan area according to the principles of 'bbaeim(drop out)' and 'gaepim(pooling)' It has provided a foundation for establishing itself as an appropriate technology in this area. Such Saemi contributed to the rural landscape and agricultural biodiversity through its own system and served as a public interest function. It is necessary to know, conserve, manage, and continuously utilize the value of this Saemi as an agricultural heritage.

An Analysis of the Rice Situation in Nicaragua for Improving National Production.

  • Chang-Min Lee;Oporta Juan;Ho-Ki Park;Hyun-Su Park;Jeonghwan Seo;Man-Kee Baek;Jae-Ryoung Park;O-Young Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.90-90
    • /
    • 2022
  • Nicaragua is located in Central America, climatic conditions are considered tropical dry forest. Statistics reflex that in Nicaragua exits 24,000 rice farmers. National rice production only covers 73% of the national consumption. It exists two sowing system: irrigation and rainfed. Varieties used in both systems are mid-late maturity (120-135 days), there are 14 released varieties for irrigation, eight for rainfed, and eight landraces used in rainfed. The current breeding system (introduction of lines from Colombia) has increased the national production, however, has some limitation due to the lack of enough variability, reducing the proability of finding good genotypes and therefore the possibility of satisfying 100% of the demand. The purpose of this study was to analyze the problems that must be resolved in the short and long term to improve rice productivity in Nicaragua. In this paper we explain some proposal for an improvement plan. The selection of varieties with high adaptability to various cultivation environmental conditions it is necessary, also to thoroughly manage seed purity to supply certified seeds. In rice cultivation technology, it needs to improve seedling standing and weeding effect by improving soil leveling and water-saving cultivation technology. Also, proper fertilization and planting density must be established in irrigated and rain-fed areas. Furthermore, capacity must be strengthened by collecting and training with the most recent agricultural technology information, as well as by revitalizing the union rather than the individual farmer. It is necessary to develop varieties highly adaptable to the Nicaraguan cultivation environment, as well as to expand irrigation facilities and cultivation technology suitable for weather conditions in rain-fed areas. Last, it is necessary to maintain the consistency of agricultural policy for continuous and stable rice production in response to climate change events such as drought or intermittent heavy rain.

  • PDF

Effects of Vernalization, Temperature, and Soil Drying Periods on the Growth and Yield of Chinese Cabbage (춘화, 온도와 토양건조 기간에 따른 배추의 생장 및 수량)

  • Lee, Sang Gyu;Lee, Hee Ju;Kim, Sung Kyeom;Choi, Chang Sun;Park, Sung Tae;Jang, Yoon Ah;Do, Kyung Ran
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.820-828
    • /
    • 2015
  • This study was carried out to determine the effects of vernalization, temperature, and soil water deficit (SD) on mesophyll cells, growth, and yield of Chinese cabbage (Brassica campestris L). The palisade parenchyma and spongy tissues of Chinese cabbage were observed under full irrigation and two weeks of SD treatment. These cells were severely collapsed by four weeks SD treatment. The SD treatment had the greatest influence on the growth of Chinese cabbage among the tested treatment factors (vernalization, temperature, and SD), growth significantly decreased by severe drought treatment (four weeks SD treatment). In addition, the relative growth rate, unit leaf rate, leaf area ratio, specific leaf area, and leaf weight ratio were significantly affected by SD treatment; however, other individual factors and their combined treatments did not influence the analyzed growth parameters. The yield under vernalization after high temperature and full irrigation treatments was 3,056 kg/10 a, which was the greatest among all the tested treatments, while four-week SD treatment significantly reduced the yield. Head formation of Chinese cabbage was not altered under SD treatment, and vernalization treatments did not induce bolting. Our results indicated that collapsing mesophyll cells and reduced growth and yield were induced by SD treatment. Thus we suggest that optimal irrigation system should be install to avoid or overcome crippling drought conditions in the open field.