• Title/Summary/Keyword: indium tin oxide thin film (ITO)

Search Result 230, Processing Time 0.028 seconds

Fabrication of Indium Tin Oxide (ITO) Transparent Thin Films and Their Microwave Shielding Properties (Indium Tin Oxide (ITO) 투광성 박막의 제조 및 전자파 차폐특성)

  • Kim, Yeong-Sik;Jeon, Yong-Su;Kim, Seong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1055-1061
    • /
    • 1999
  • Indium Tin Oxide (ITO) films were fabricated by vacuum deposition technique and their microwave shielding properties were investigated for the application to the transparent shield material. The vacuum coating was conducted in a RF co-sputtering machine. The film composition and structure associated with the sputtering conditions (argon and oxygen pressure. substrate temperature. RF input power) were investigated for the attainment of high electrical conductivity and good transparency. The electrical conductivity of IT0 films fabricated under the optimum deposition conditions (substrate temperature : $300^{\circ}C$. Ar flow rate : 20 sccm, Oxygen flow rate : 10 sccm, In/Sn input power : 50/30 W) showed 5.6$\times10^4$mho/m. The optical transparency is also considerably good. The microwave shielding properties including the dominant shielding mechanism are investigated from the electrical conductivity, thickness and skin depth of the ITO films. The total shielding effectiveness is then estimated to be 26 dB, which provides a suggestion that the IT0 films can be effectively used as the transparent shield material.

  • PDF

The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film (전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구)

  • Seo Yeong Son;Seong Yeon Park;Sangsub Lee;Changhun Yun
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.248-256
    • /
    • 2023
  • Indium tin oxide (ITO) transparent electrode film has been widely adopted for the various applications such as display and electric vehicle. In this paper, we studied how to enhance the thermoforming stability of ITO film by applying the highly conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin layer. Based on the change of sheet resistance value, the influence of the additional solvent with different boiling point was investigated for the PEDOT:PSS coating solution. In addition, by analyzing optical transmittance and Raman spectrum, we confirmed the key mechanism which determine the final electrical conductivity of the PEDOT:PSS on ITO film using an ethylene glycol solvent. The final ITO transparent electrode coated with PEDOT:PSS performed the outstanding endurance of electrical conduction even in 126% stretching condition.

Properties of $TiO_2$ thin film coated on $SnO_2$ thin films by sol-gel method (Sol-gel 법에 의해 $SnO_2$계 박막위에 코팅된 $TiO_2$ 박막의 특성)

  • Lim, Tae-Young;Cho, Hye-Mi;Kim, Jin-Ho;Hwang, Jong-Hee;Hwang, Hae-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.256-261
    • /
    • 2009
  • Hydrophilic and transparent $TiO_2$ thin film was fabricated by sol-gel method and the properties of contact angle, surface morphology, and transmittance were measured. In addition, surfactant Tween 80 was used for increasing the hydrophilic property of thin film. When the contents of Tween 80 in $TiO_2$ solution was 0, 10, 30, 50wt%, the contact angles of $TiO_2$ thin film were $41.4^{\circ}$, $18.2^{\circ}$, $16.0^{\circ}$, $13.2^{\circ}$, respectively. Fabricated $TiO_2$ thin film showed the photocatalytic property that decomposed methylene blue and decreased the absorbance of solution after UV irradiation. $TiO_2$ thin films fabricated with the solution of 30 wt% Tween 80 were deposited on glass (bare), antimony tin oxide (ATO), fluorine tin oxide (FTO), indium tin oxide (ITO) coated glass substrates, and the contact angle and transmittance of thin film was measured. The contact angles of thin films deposited on four substrates were $16.2\sim27.1^{\circ}$ and was decreased to the range of $13.2\sim17.6^{\circ}$ after UV irradiation, Especially, the thin films coated on ATO and FTO glass substrate showed high transmittance of 74.6% in visible range, respectively, and low transmittance of 54.2% and 40.4% in infrared range, respectively.

Annealing Effect on the Electrical Characteristics for Oxide Semiconductor ITO_{(n)}/Si_{(p)}$ Solar Cell (산화물 반도체 ITO_{(n)}/Si_{(p)}$ 태양전지의 전기적 특성에 미치는 열처리 효과)

  • 김용운
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.64-68
    • /
    • 2003
  • ITO_{(n)}/Si_{(p)}$ solar cell is fabricated by vaccum deposition method under the resistance heating with substrate temperature kept about 200[$^{\circ}C$] and than their properties are investigated. The maximum output of fabricated solar cell is obtained when the composition of the thin film is consisted of indium oxide 91[mole %] and tin oxide 9(mole %). The solar cell electrical charateristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min].

High Conductive Transparent Electrode of ITO/Ag/i-ZnO by In-Line Magnetron Sputtering Method (인-라인 마그네트론 스퍼터링 방법에 의한 고전도성 ITO/Ag/i-ZnO 투명전극)

  • Kim, Sungyong;Kwon, Sangjik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • It has increased several decades in the field of Indium Tin Oxide (ITO) transparent thin film, However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials[1]. So far, in order to overcome this disadvantage, we show that a transparent ITO/Ag/i-ZnO multilayer thin film electrode would be more cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report the properties of ITO/Ag/i-ZnO multilayer thin film by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\Box}$ at same visible light transmittance. (minimal point $5.2{\Omega}/{\Box}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

RF-enhanced DC-magnetron Sputtering of Indium Tin Oxide

  • Futagami, Toshiro;Kamei, Masayuki;Yasui, Itaru;Shigesato, Yuzo
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2001
  • Indium tin oxide (ITO) films were deposited on glass substrates at $300^{\circ}C$ in oxygen/argon mixtures by RF-enhanced DC-magnetron sputtering and were compared to those by conventional DC magnetron sputtering. The RF enhancement was performed using a coil above an ITO target. X-ray diffraction measurements revealed that RF-enhanced plasma affected the preferred orientation and the crystallinity of the films. The resistivity of the films prepared by RF-enhanced DC-magnetron sputtering was almost constant at oxygen content lower than 0.3% and then increased sharply with increasing oxygen content. However the resistivity of the films by conventional sputtering has little dependence on the oxygen content. Those results can be explained on the basis of the incorporation of oxygen into the ITO films due to the RF enhancement.

  • PDF

Properties of ITO (Indium Tin Oxide) Thin Films Prepared by Magnetron Sputtering Using DC and Pulse Modes

  • Hwang, Man-Soo;Lee, Hye-Jung;Jeong, Heui-Seob;Seo, Yong-Woon;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.842-845
    • /
    • 2002
  • We report on the properties of ITO thin films prepared by dc and pulse magnetron sputtering at low temperature. The electrical, optical, and surface properties of the films prepared by dc and pulse magnetron sputtering were compared. We discuss the role the pulse power plays in determining ITO thin film properties that are important in flat panel applications.

  • PDF

Properties of ITO thin films with film thickness at room temperature (막 두께 변화에 따라 실온 제작된 ITO 박막의 특성)

  • Kim, K.H.;Kim, H.W.;Keum, M.J.;Kim, H.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1856-1858
    • /
    • 2005
  • In this study, Indium Tin Oxide(ITO) thin films were prepared at $O_2$ gas 0.2 sccm, no heating to substrate and working pressure 1mTorr with varying deposition time. We estimated structural, optical, electrical characteristics of ITO thin films as function of ITO thin films thickness. As a result, XRD peaks increased with increasing the thickness. The ITO thin film was fabricated with resistivity $4.23{\times}10^{-4}[{\Omega}{\cdot}cm]$, carrier mobility $52.9[cm^2/V{\cdot}sec]$, carrier concentration $2.79{\times}10^{20}[cm^{-3}]$. And we also observed that the SEM images of ITO thin films surface.

  • PDF