• Title/Summary/Keyword: indium tin oxide thin film (ITO)

Search Result 230, Processing Time 0.033 seconds

Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer (2-TNATA:C60 정공 주입층을 이용한 유기발광다이오드의 성능 향상 연구)

  • Park, So-Hyun;Kang, Do-Soon;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.372-376
    • /
    • 2008
  • Vacuum deposited 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA), used as a hole injection (HIL) material in OLEDs, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in the devices. C60-doped 2-TNATA:C60 (20 wt%) film was formed via co-evaporation process and molecular ordering and topology of 2-TNATA:C60 films were investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized as well. Vacuum-deposited C60 film was molecularly oriented, but neither was 2-TNATA:C60 film due to the uniform dispersion of C60 molecules in the film. By using C60-doped 2-TNATA:C60 film as a HIL, the current density and luminance of a multi-layered ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al device were significantly increased and the current efficiency of the device was increased from 4.7 to 6.7 cd/A in the present study.

Optically Transparent ITO Film and the Fabrication of Plasma Signboard (투명 전극 ITO 박막의 열처리 영향과 플라즈마 응용 표시소자 제작에 관한 연구)

  • Jo, Young Je;Kim, Jae-Kwan;Han, Seung-Cheol;Kwak, Joon-Seop;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Indium tin oxide(ITO) thin films were deposited on the glass substrates by radio-frequency (RF) magnetron sputtering method. The influence of rapid thermal annealing (RTA) treatment on the optical and electrical properties of the films were investigated for the purpose of fabricating plasma display signboard. Structural properties, surface roughness, sheet resistance and transmittance of the ITO film were analysed by using x-ray diffraction method, atomic force microscopy (AFM), four point prove, and ultraviolet-visible spectrometer, respectively. It was found that the RTA treatment increased the transmittance and decreased the resistivity of the ITO film, respectively. Furthermore, we successfully demonstrated the direct-current plasma signboard by using ITO electrode and phosphors.

증착공정에서 산소유량 제어에 따른 박막 특성 연구

  • Jo, Tae-Hun;Park, Hye-Jin;Yun, Myeong-Su;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.266.1-266.1
    • /
    • 2014
  • 반도체 및 디스플레이 등의 산업 중 증착공정에서 TCO 등 산화막의(oxide thin film) 중요성은 날로 대두되고 있다. 특히 정밀한 막질을 원하는 공정에서 산소(Oxygen)유량의 차이로 인한 생성된 막질의 변화가 크다. 이로 인하여 여러 연구실에서 다양한 연구가 활발하게 진행중에 있다. 특히 최근 IGZO (In-Ga-ZnO)가 이슈가 되면서 더 다양하게 연구가 진행중이다. 그러나 공정 장비의 노화나 증착공정중장비(Chamber)내부의 미세한 변화가 많아 산소와 공정 기체의 비가 틀어지는 경우가 있고 이를 제어하기는 쉽지 않은 실정이다. 본 연구에서는 먼저 ITO (Indium Tin Oxide)타겟을 통해 스퍼터장비에서 일반적인 공정을 진행한 박막과, 제작된 유량 제어 시스템을 통하여 공정을 진행한 박막을 만들었다. 이를 통해 박막의 차이점을 분석하고 증착공정중 발생하는 플라즈마의 분석도 진행하여 공정의 제어가 가능함을 확인하였다.

  • PDF

Electric conduction mechanism Analysis of AW Thin Films using XPS Measurement (XPS 분석에 의한 AZO 박막의 전기전도 메커니즘 해석)

  • Jin, Eun-Mi;Kim, Kyeong-Min;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.446-447
    • /
    • 2007
  • Aluminisum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). In our paper, AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$, $800^{\circ}C$ for 2 hr with $N_2$ atmosphere, respectively. We investigated that the electric properties and qualitative analysis of AZO films, which measured using the methods of Hall effect, X-ray photoelectron spectroscopy (XPS).

  • PDF

A Study on the Characteristics of ITO Thin Film for Top Emission OLED (Top Emission OLED를 위한 ITO 박막 특성에 대한 연구)

  • Kim, Dong-Sup;Shin, Sang-Hoon;Cho, Min-Joo;Choi, Dong-Hoon;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.450-450
    • /
    • 2006
  • Organic light-emitting diodes (OLED) as pixels for flat panel displays are being actively pursued because of their relatively simple structure, high brightness, and self-emitting nature [1, 2]. The top-emitting diode structure is preferred because of their geometrical advantage allowing high pixel resolution [3]. To enhance the performance of TOLEDs, it is important to deposit transparent top cathode films, such as transparent conducting oxides (TCOs), which have high transparency as well as low resistance. In this work, we report on investigation of the characteristics of an indium tin oxide (ITO) cathode electrode, which was deposited on organic films by using a radio-frequency magnetron sputtering method, for use in top-emitting organic light emitting diodes (TOLED). The cathode electrode composed of a very thin layer of Mg-Ag and an overlaying ITO film. The Mg-Ag reduces the contact resistivity and plasma damage to the underlying organic layer during the ITO sputtering process. Transfer length method (TLM) patterns were defined by the standard shadow mask for measuring specific contact resistances. The spacing between the TLM pads varied from 30 to $75\;{\mu}m$. The electrical properties of ITO as a function of the deposition and annealing conditions were investigated. The surface roughness as a function of the plasma conditions was determined by Atomic Force Microscopes (AFM).

  • PDF

Electrical Reliability of ITO Film on Flexible Substrate During bending Deformations and Bending Fatigue (유연 기판상 ITO 전극의 굽힘변형 및 굽힘피로에 따른 전기적 신뢰성 연구)

  • Seol, Jea-Geun;Kim, Byoung-Joon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.47-52
    • /
    • 2017
  • Recently, a great attention has been paid to the mechanical behavior of ITO (Indium Tin Oxide) film, which is widely used in current smart devices due to its excellent electrical properties and transparency. In this study, the reliability of ITO thin films on flexible substrates was investigated using bending test and bending fatigue test. According to the relative position of ITO and substrate, the experiment was conducted on both outer and inner bending conditions. Inner bending condition exhibited superior electrical stability compared to outer bending test. The electrical resistance during outer bending fatigue test significantly increased compared to that in the inner bending fatigue. The crack nucleation and propagation differs according to the stress state and they have a great influence on the electrical resistance. The crack morphologies were observed by scanning electron microscopy.

A Study on the Characteristics of Se/Zns Thin Film Light Amplifiers (Se/Zns 박막 광증폭기의 특성에 관한 연구)

  • Park, Gye-Choon;Im, Young-Sham;Lee, JIn;Chung, Hae-Duck;Gu, Hal-Bon;Kim, Jong-Uk;Jeong, In-Seong;Jeong, Woon-Jo;Lee, Ki-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.307-310
    • /
    • 1999
  • Using Se as a photoconductive element and ZnS as a luminescent element, a Se/ZnS thin film device for light amplifier applications was fabricated and its characteristics were investigated. The Se/ZnS thin film light amplifier was fabricated by evaporating the ZnS thin film on an ITO(Indium Tin Oxide) glass and the Se thin film on the ZnS thin film in sequence. The results of the characteristics investigation are summarized as follows: (1) When the frequency of an excitation voltage was increased, both the brightness response and the brightness saturation of the Se/ZnS thin film light amplifier began to start at a higher light input. (2) The gain of the Se/ZnS thin film light amplifier was dependent upon the amplitude and the frequency of the excitation voltage as well as an external light input. (3) When the Se/ZnS thin film light amplifier was excited by a direct current of a constant voltage, the frequency of the output brightness was\\`equal to the frequency of the input light applied. When the light amplifier was excited by a sinusoidal voltage of 60 Hz, the frequency of the output brightness was 120 Hz.

  • PDF

Flexible ITO/PEDOT:PSS Hybrid Transparent Conducting Electrode for Organic Photovoltaics

  • Lim, Kyounga;Jung, Sunghoon;Kang, Jae-Wook;Kim, Jong-Kuk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.299-299
    • /
    • 2013
  • Indium Tin Oxide (ITO) has widely been used as a transparent conductive oxide (TCE) for photovoltaic devices. Lately, flexibility of ITO becomes an issue as demand of flexible device increases. Several scientists have tried to substitute ITO to different materials such as conductive polymer, graphene, CNT, and metal nanowire because of ITO brittleness. Among the substitute materials, PEDOT:PSS has mostly paid attention because PEDOT:PSS has excellent flexibility and good conductivity. The conductivity of PEDOT:PSS increases up to 1000 S/cm with additives such as DMSO, EG, sorbitol, and so on. In our research group, we introduce a conductive polymer PEDOT:PSS as a buffer layer to improve not only flexibility but also conductivity. As PEDOT:PSS layer forms beneath ITO thin film (20 nm), sheet resistance decreases from $230{\Omega}$/${\Box}$ to $85{\Omega}$/${\Box}$ and crack initiation decreases from 4.5 mm to 3.5 mm as well. We have fabricated organic photovoltaic device and power conversion efficiencies using conventional ITO electrode and ITO/PEDOT:PSS hybrid electrode. The photovoltaic property such as power conversion efficiency for ITO/PEDOT:PSS hybrid electrode is comparable to the value obtained using conventional ITO electrode on glass substrate.

  • PDF

Analysis on the Electrical.optical Properties and fabrication of OLED with AZO Anode Electrode (AZO Anode 전극을 적용한 OLED 소자의 제작과 전기적.광학적 특성 분석)

  • Jin, Eun-Mi;Shin, Eun-Chul;Kim, Tae-Wan;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • AZO(Aluminum-doped Zinc Oxide) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with ITO(Indium Tin Oxide). AZO films have been deposited on glass (corning 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$ for 2 hr with $N_2$ atmosphere. The AZO films were used as an anode contact to fabricate OLEDs(Organic Light Emitting Diodes). OLEDs with $AZO/TPD/Alq_3/Al$ configuration were fabricated by thermal evaporation. We investigated that the electric, structural and optical properties of AZO thin films, which measured using the methods of XRD, SEM, Hall measurement and Spectrophotometer. The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO devices fabricated under the same conditions.

Preparation of Large Area $TiO_2$ Thin Films by Low Pressure Chemical Vapor Deposition

  • Jeon, Byeong-Su;Lee, Jung-Gi;Park, Dal-Geun;Sin, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.861-869
    • /
    • 1994
  • Chemical vapor deposition using titanium tetra isopropoxide(TTIP) was employed to investigate effects of process parameters on the uniformity of $TiO_{2}$this films deposited on Indium Tin Oxide (ITO)coated glass. Deposition experiments were carried out at temperatures ranging from $300^{\circ}C$ to $400^{\circ}C$ under the pressure of 0.5~2 torrin a cold wall reactor which can handle 200mm substrate. It was found that the growth rate of $TiO_{2}$was closely related to the reaction temperature and the ractant gas compositions. Apparent activation energy for the deposition rate was 62.7lkJ/mol in the absence of $O_{2}$ and 100.4kj/mol in the presence of $O_{2}$, respectively. Homogeneous reactions in the gas phase were promoted when the total pressure of the reactor was increased. Variance in the film thickness was less than a few percent, but at high deposition rates film thickness was less uniform. Effects of reaction temperature on $TiO_{2}$ thin film characteristic was investigated with SEM, XRD and AES.

  • PDF