• 제목/요약/키워드: indium surfactant

검색결과 12건 처리시간 0.025초

Growth of AlN/GaN HEMT structure Using Indium-surfactant

  • Kim, Jeong-Gil;Won, Chul-Ho;Kim, Do-Kywn;Jo, Young-Woo;Lee, Jun-Hyeok;Kim, Yong-Tae;Cristoloveanu, Sorin;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.490-496
    • /
    • 2015
  • We have grown AlN/GaN heterostructure which is a promising candidate for mm-wave applications. For the growth of the high quality very thin AlN barrier, indium was introduced as a surfactant at the growth temperature varied from 750 to $1070^{\circ}C$, which results in improving electrical properties of two-dimensional electron gas (2DEG). The heterostructure with barrier thickness of 7 nm grown at of $800^{\circ}C$ exhibited best Hall measurement results; such as sheet resistance of $215{\Omega}/{\Box}$electron mobility of $1430cm^2/V{\cdot}s$, and two-dimensional electron gas (2DEG) density of $2.04{\times}10^{13}/cm^2$. The high electron mobility transistor (HEMT) was fabricated on the grown heterostructure. The device with gate length of $0.2{\mu}m$ exhibited excellent DC and RF performances; such as maximum drain current of 937 mA/mm, maximum transconductance of 269 mS/mm, current gain cut-off frequency of 40 GHz, and maximum oscillation frequency of 80 GHz.

Indium-Morin 착물에 관한 흡착벗김전압전류법적 연구 (Adsorptive Stripping Voltammetry of Indium-Morin Complex)

  • 손세철;엄태윤;하영경;정기석
    • 대한화학회지
    • /
    • 제35권5호
    • /
    • pp.506-511
    • /
    • 1991
  • In-Morin 착물에 대한 흡착벗김전압전류법적 연구를 HMDE를 사용하여 pH 3.20의 0.1M 아세테이트 완충용액에서 수행하였다. 흡착 현상들을 미분펄스전압전류법으로 관찰하였으며, HMDE의 표면에 흡착된 착물의 환원 전류에 미치는 여러 분석 조건들에 과하여 논의하였다. 또한 여러 다른 금속이온들과 계면활성제의 방해효과에 관해서도 검토하였다. 본 연구에서의 검출한계는 90초의 흡착시간을 적용하였을 때 2.6nM이었으며, 4${\mu}g$/l의 In을 7회 분석하였을 때 상대표준편차는 2.0%이었다.

  • PDF

생물학적 노출평가를 통한 타겟 제조업 근로자의 공정별 인듐 노출위험성 조사 (Investigating the potential exposure risk to indium compounds of target manufacturing workers through an analysis of biological specimens)

  • 원용림;최윤정;최성렬;김은아
    • 한국산업보건학회지
    • /
    • 제24권3호
    • /
    • pp.263-271
    • /
    • 2014
  • Objectives: Along with the several cases of pulmonary disorders caused by exposure to indium that have been reported in Japan, China, and the United States, cases of Korean workers involved in processes that require handling of indium compounds with potential risk of exposure to indium compounds have also been reported. We performed biological monitoring for workers in various target manufacturing processes of indium, indium oxide, and indium tin oxide(ITO)/indium zinc oxide(IZO) in domestic factories. Materials: As biological exposure indices, we measured serum concentrations of indium using inductively coupled plasma mass spectrometry, and Krebs von den Lungen 6(KL-6) and surfactant protein D(SP-D) using enzyme-linked immunosorbent assays. We classified the ITO/IZO target manufacturing process into powdering, mixing, molding, sintering, polishing, bonding, and finishing. Results: The powdering process workers showed the highest serum indium level. The mixing and polishing process workers also showed high serum indium levels. In the powdering process, the mean indium serum concentration in the workers exceeded $3{\mu}g/L$, the reference value in Japan. Of the powdering, mixing, and polishing process workers, 83.3%, 50.0%, and 24.5%, respectively, had values exceeding the reference value in Japan. We suppose that the reason of the higher prevalence of high indium concentrations in powder processing workers was that most of the particles in the powdering process were respirable dust smaller than $10{\mu}m$. The mean KL-6 and SP-D concentrations were high in the powdering, mixing, and polishing process workers. Therefore, the workers in these processes who were at greater risk of exposure to indium powder were those who had higher serum levels of indium, as well as KL-6 and SP-D. We observed significant differences in serum indium, KL-6, and SP-D levels between the process groups. Conclusions: Five among the seven reported cases of "indium lung" in Japan involved polishing process workers. Polishing process workers in Korea also had high serum levels of indium, KL-6, and SP-D. The outcomes of this study can be used as essential bases for establishing biological monitoring measures for workers handling indium compounds, and for developing health-care guidelines and special medical surveillance in Korea.

Transparent Conductive Single-Walled Carbon Nanotube Films Manufactured by adding carbon nanoparticles

  • Lee, Seung-Ho;Kim, Myoung-Soo;Goak, Jung-Choon;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.417-417
    • /
    • 2009
  • Although a transparent conductive film (TCF) belongs to essential supporting materials for many device applications such as touch screens, flat panel displays, and sensors, a conventional transparent conductive material, indium-tin oxide (ITO), suffers from considerable drawback because the price of indium has soared since 2001. Despite a recent falloff, a demand of ITO is expected to increase sharply in the future due to the trend of flat panel display technologies toward flexible, paper-like features. There have been recently extensive studies to replace ITO with new materials, in particular, carbon nanotubes (CNTs) since CNTs possess excellent properties such as flexibility, electrical conductivity, optical transparency, mechanical strength, etc., which are prerequisite to TCFs. This study fabricated TCFs with single-walled carbon nanotubes (SWCNTs) produced by arc discharge. The SWCNTs were dispersed in water with a surfactant of sodium dodecyl benzene sulfonate (NaDDBS) under sonication. Carbon black and fullerene nanoparticles were added to the SWCNT-dispersed solution to enhance contact resistance between CNTs. TCFs were manufactured by a filtration and transfer method. TCFs added with carbon black and fullerene nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy (optical transmittance), and four-point probe measurement (sheet resistance).

  • PDF

Cathodic Electrochemical Deposition of Highly Ordered Mesoporous Manganese Oxide for Supercapacitor Electrodes via Surfactant Templating

  • Lim, Dongwook;Park, Taesoon;Choi, Yeji;Oh, Euntaek;Shim, Snag Eun;Baeck, Sung-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.148-154
    • /
    • 2020
  • Highly ordered mesoporous manganese oxide films were electrodeposited onto indium tin oxide coated (ITO) glass using sodium dodecyl sulfate (SDS) and ethylene glycol (EG) which were used as a templating agent and stabilizer for the formation of micelle, respectively. The manganese oxide films synthesized with surfactant templating exhibited a highly mesoporous structure with a long-range order, which was confirmed by SAXRD and TEM analysis. The unique porous structure offers a more favorable diffusion pathway for electrolyte transportation and excellent ionic conductivity. Among the synthesized samples, Mn2O3-SDS+EG exhibited the best electrochemical performance for a supercapacitor in the wide range of scan rate, which was attributed to the well-developed mesoporous structure. The Mn2O3 prepared with SDS and EG displayed an outstanding capacitance of 72.04 F g-1, which outperform non-porous Mn2O3 (32.13 F g-1) at a scan rate of 10 mV s-1.

Characterization of CNT-ink and fabrication of a cold cathode using jet-printing technique.

  • Lee, Dae-Sik;Lim, Seong-Chu;Lee, Young-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1532-1534
    • /
    • 2008
  • Aquesous carbon nanotubes (CNTs) solutions were prepared using SDS (sodium dodecyl sulfonate) and NADDBS (sodium dodecylbenzene sulfonate). Our inks are found to have the viscosity of 1-2 cps. In addition, the surface tension of inks inversely decreased with increasing surfactant concentration and then saturated at critical micelle concentration (CMC). The low surface tension at CMC gave rise to lower contact angles on Indium layers, resulting in larger printable feature sizes. In the fabrication of cold cathode, jet-printing is feasible to modify and scale up the cathode structures. These feasibilities could contribute jet-printing method to be more adaptable for making large-area cold cathodes.

  • PDF

Electrodeposition of Polypyrrole Nanowires within Vertically Oriented Mesoporous Silica Template

  • Kang, Ho-Suk;Lee, Ho-Chun;Kwak, Ju-Hyoun
    • 전기화학회지
    • /
    • 제14권1호
    • /
    • pp.22-26
    • /
    • 2011
  • Polypyrrole (Ppy) nanowire has been electrochemically synthesized via vertically oriented mesoporous silica template. The mesoporous template is also electrochemically deposited on indium tin oxide coated (ITO) glass from tetraethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) surfactant. The highly ordered silica template is demonstrated to be 100~120nm thick with the pores of 4~5 nm diameter by scanning electron microscope (SEM) and transmission electron microscope (TEM). Ppy is formed to fill pores of the silica template from pyrrole solution by electrochemical oxidation. The Ppy in Ppy/silica/ITO composite was found to exhibit reversible electrochemical activity, as characterized by cyclic voltammetry (CV).

Improved Conductivities of SWCNT Transparent Conducting Films on PET by Spontaneous Reduction

  • 민형섭;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.43.2-43.2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWCNT) are transparent in the visible and show conductivity comparable to copper, and are environmentally stable. SWCNT films have high flexibility, conductivity and transparency approaching that indium tin oxide (ITO), and can be prepared inexpensively without vacuum equipment. Transparent conducting Films (TCF) of SWCNTs has the potential to replace conventional transparent conducting oxides (TCO, e.g. ITO) in a wide variety of optoelectronic devices, energy conversion and photovoltaic industry. However, the sheet resistance of SWCNT films is still higher than ITO films. A decreased in the resistivity of SWCNT-TCFs would be beneficial for such an application. We fabricated SWCNT sheet with $KAuBr_4$ on PET substrate. Arc-discharge SWCNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWCNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with AuBr4-, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. $HNO_3$ treated SWCNT films with Au nano-particles have the lowest 61 ${\Omega}$/< sheet resistance in the 80% transmittance. Sheet resistance was decreased due to the increase of the hole concentration at the washed SWCNT surface by p-type doping of $AuBr_4{^-}$.

  • PDF

High Conductivity of Transparent SWNT Films on PET by Ionic Doping

  • Min, Hyung-Seob;Kim, Sang-sig;Choi, Won-Kook;Lee, Jeon-Kook
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.65-65
    • /
    • 2011
  • Single-well carbon nanotubes (SWNT) have been proposed as a promising candidate for various applications owing to their excellent properties. In particular, their fascinating electrical and mechanical properties could provide a new area for the development of advanced engineering materials. A transparent conductive thin film (TCF) has increased for applications such as liquid crystal displays, touch panels, and flexible displays. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. But, a bundle of CNTs has different electrical properties than their individual counterparts. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched. Arc-discharge SWNTs were dispersed in deionized water by adding sodum dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate at $100^{\circ}C$. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then treated with ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. Results, we show that 97 ${\Omega}$/> sheet resistance can be achieved with 81% transmittance at the wavelength of 550 nm. The changes in electrical and optical conductivity of SWNT film before and after ionic doping treatments were discussed.

  • PDF

Effect of Au-ionic Doping Treatment on SWNT Flexible Transparent Conducting Films

  • 민형섭;정명선;최원국;김상식;이전국
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.111.1-111.1
    • /
    • 2012
  • Interest in flexible transparent conducting films (TCFs) has been growing recently mainly due to the demand for electrodes incorporated in flexible or wearable displays in the future. Indium tin oxide (ITO) thin films, which have been traditionally used as the TCFs, have a serious obstacle in TCFs applications. SWNTs are the most appropriate materials for conductive films for displays due to their excellent high mechanical strength and electrical conductivity. In this work, the fabrication by the spraying process of transparent SWNT films and reduction of its sheet resistance on PET substrates is researched Arc-discharge SWNTs were dispersed in deionized water by adding sodium dodecyl sulfate (SDS) as surfactant and sonicated, followed by the centrifugation. The dispersed SWNT was spray-coated on PET substrate and dried on a hotplate. When the spray process was terminated, the TCF was immersed into deionized water to remove the surfactant and then it was dried on hotplate. The TCF film was then was doped with Au-ionic doping treatment, rinsed with deionized water and dried. The surface morphology of TCF was characterized by field emission scanning electron microscopy. The sheet resistance and optical transmission properties of the TCF were measured with a four-point probe method and a UV-visible spectrometry, respectively. This was confirmed and discussed on the XPS and UPS studies. We show that 87 ${\Omega}/{\Box}$ sheet resistances with 81% transmittance at the wavelength of 550nm. The changes in electrical and optical conductivity of SWNT film before and after Au-ionic doping treatments were discussed. The effect of Au-ion treatment on the electronic structure change of SWNT films was investigated by Raman and XPS.

  • PDF