• Title/Summary/Keyword: indium

검색결과 1,606건 처리시간 0.025초

Calibration Methodology for Transient Enhanced Diffusion of indium

  • Jun Ha, Lee;Gi Ryang, Byeon;Hyeon Chan, Jo;Gwang Seon, Kim
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.31-34
    • /
    • 2003
  • We developed a new systematic calibration procedure which was applied to the calibration of the diffusivity, segregation and TED model of the indium impurity. The TED of the indium impurity has been studied using 4 different groups of experimental conditions. Although the indium is susceptible to the TED, the RTA is effective to suppress the TED effect and maintain a steep retrograde profile. Like the boron, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients at the $Si/SiO_2$ interface much less than 1. In contrast, however, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed technique is validated by SIMS data with errors less than 5% between simulation and experiment.

  • PDF

A Solid-Contact Indium(III) Sensor based on a Thiosulfinate Ionophore Derived from Omeprazole

  • Abbas, Mohammad Nooredeen;Amer, Hend Samy
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1153-1159
    • /
    • 2013
  • A novel solid-contact indium(III)-selective sensor based on bis-(1H-benzimidazole-5-methoxy-2-[(4-methoxy-3, 5-dimethyl-1-pyridinyl) 2-methyl]) thiosulfinate, known as an omeprazole dimer (OD) and a neutral ionophore, was constructed, and its performance characteristics were evaluated. The sensor was prepared by applying a membrane cocktail containing the ionophore to a graphite rod pre-coated with polyethylene dioxythiophene (PEDOT) conducting polymer as the ion-to-electron transducer. The membrane contained 3.6% OD, 2.3% oleic acid (OA) and 62% dioctyl phthalate (DOP) as the solvent mediator in PVC and produced a good potentiometric response to indium(III) ions with a Nernstian slope of 19.09 mV/decade. The constructed sensor possessed a linear concentration range from $3{\times}10^{-7}$ to $1{\times}10^{-2}$ M and a lower detection limit (LDL) of $1{\times}10^{-7}$ M indium(III) over a pH range of 4.0-7.0. It also displayed a fast response time and good selectivity for indium(III) over several other ions. The sensor can be used for longer than three months without any considerable divergence in potential. The sensor was utilized for direct and flow injection potentiometric (FIP) determination of indium(III) in alloys. The parameters that control the flow injection method were optimized. Indium(III) was quantitatively recovered, and the results agreed with those obtained using atomic absorption spectrophotometry, as confirmed by the f and t values. The sensor was also utilized as an indicator electrode for the potentiometric titration of fluoride in the presence of chloride, bromide, iodide and thiocyanate ions using indium(III) nitrate as the titrant.

Indium 첨가된 SnO2 후막형 가스센서의 특성 (Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors)

  • 유일;이지영
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

Electrical Characteristics of Solution Processed In-Ga-ZnO Thin Film Transistors (IGZO TFTs) with Various Ratio of Materials

  • 이나영;최병덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.293.2-293.2
    • /
    • 2016
  • The In this paper, we have fabricated the solution processed In-Ga-ZnO thin film transistors (IGZO TFTs) by varying indium and gallium ratio. The indium ratio of IGZO TFTs was changed from 1 to 5 at fixed gallium and zinc oxide atomic percent of 1:1 and gallium ratio was varied from 1 to 5 at fixed indium and zinc oxide atomic percent of 1:1. When the indium ratio was increased at fixed gallium and zinc oxide ratio of 1:1, threshold voltage was negatively shifted from 1.03 to -6.18 V and also mobility was increased from 0.018 to $0.076cm2/V{\cdot}sec$. It means that the number of carriers in IGZO TFTs were increased due to great formation of the oxygen vacancies which generate electrons. In contrast, when the gallium ratio was increased in IGZO TFTs with indium and zinc oxide ration of 1:1, the on/off current ratio was increased from $1.88{\times}104$ to $2.22{\times}105$. It is because gallium have stronger chemical bonds with oxygen than that with the zinc and indium ions that lead to the decreased in electron concentration.

  • PDF

대정제법에 의한 전자재료용 indium정제에 관한 연구 (A study on the indium purification for electronic materials by zone refining)

  • 김백년;김선태;송복식;문동찬
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제7권2호
    • /
    • pp.130-137
    • /
    • 1994
  • Indium, element of group III, was refined by using zone refining for high purity refinement. We have found the impurities of T1, Zn, Fe, Cd, Pb, Ni, Cu, Sn in the refined indium with ICP-AES, so that 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.7 ppm, 2.8 weight ppm of Cd was reduced to 2.5 ppm and 14.0 weight ppm of Sn was reduced to 6.7 ppm with 5 melten zone passes only. 3.9 weight ppm of T1 was reduced to less than 1 ppm, 1.0 weight ppm of Zn was reduced to 0.3 ppm, 2.8 weight ppm of Cd was reduced to less than 1.0 ppm and 14.0 weight ppm of Sn was reduced to 0.4 ppm after vacuum baking with 5 melten zone passes. The surface morpholgy of metal Indium thin film in each conditions showed that porosities were reduced in the front of sampled ingot after vacuum baking with 5 zone melten zone passes. The average electrical resistivity of Indium thin film was reduced from 1.4*10$^{-3}$ .ohm.-cm in Indium origin ingot to 7.9*10$^{-6}$ .ohm.-cm after zone refined with 5 melten zone passes.

  • PDF

용액 공정으로 제작된 InGaZnO TFT의 인듐 조성비에 따른 문턱전압 변화 (Threshold voltage shift of solution processed InGaZnO thin film transistors with indium composition ratio)

  • 박기호;이득희;이동윤;주병권;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.3-3
    • /
    • 2010
  • We investigated the influence of the indium content on the threshold voltage ($V_{th}$) shift of sol-gel-derived indium-gallium-zinc oxide (IGZO) thin film transistors (TFTs). Surplus indium composition ratio into IGZO decreases the value of $V_{th}$ of IGZO TFTs showed huge $V_{th}$ shift in the negative direction. $V_{th}$ shift decreases from 10 to -28.2V as Indium composition ratio is increased. Because the free electron density is increased according to variation of the Indium composition ratio.

  • PDF

Sonochemical Reformatsky Reaction Using Indium

  • Bang, Keuk-Chan;Lee, Koo-Yeon;Park, Yong-Kwang;Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1272-1287
    • /
    • 2002
  • Sonochemical Reformatsky reaction of aldehydes or ketones with ethyl bromoacetate in the presence of indium afforded $\beta-hydroxyesters$ in good to excellent yields under mild conditions. 2- or 3-Hydroxybenzaldehyde that contains an acidic hydrogen r eacted with ethyl bromoacetate to provide the desired compounds with the same efficiency. In the case of ethyl 2-bromopropanoate and ethyl 2-bromo-2-methylpropanoate, the desired products were obtained in good yields. Reaction of aldehyde with indium reagent in the presence of ketone group proceeded chemoselectively.

Indium Tin Oxide (ITO) Thin Film Fabricated by Indium-Tin-Organic sol with ITO Nanoparticle at Low Temperture

  • Hong, Sung-Jei;Chang, Sang-Gweon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1334-1338
    • /
    • 2006
  • In this work, indium tin oxide (ITO) thin film was fabricated by indium-tin-organic sol including ITO nanoparticle. ITO nanoparticle showed ultrafine size about 5 nm and (222) preferred crystal structure. Also, ITO sol-gel thin film showed good optical transmittance over 83% and electrical resistance less than $7\;{\times}\;10^3\;{\Omega}$.

  • PDF

펄스 레이저 방법으로 증착된 투명 산화물 전극용 인듐이 도핑된 ZnO:Al 박막 (Indium doped ZnO:Al thin films prepared by pulsed laser deposition for transparent conductive oxide electrode applications)

  • 함성길;이창현;이예나;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.27-27
    • /
    • 2008
  • The different concentration Indium doped ZnO:Al films were grown on glass substrates (Corning 1737) at $200^{\circ}C$ by pulsed laser deposition. The indium doping in AZO films shows the critical effect on the crystallinity, resistivity, and optical properties of the films. The AZO films doped with 0.3 atom % indium content exhibit the highest crystallinity, the lowest resistivity of $4.5\times10^{-4}\Omega$-cm, and the maximum transmittance of 93%. The resistivity of the indium doped-AZO films is strongly related with the crystallinity of the films. The carrier concentration in the indium doped-AZO films linearly increases with increasing indium concentration. The mobility of the AZO films with increasing indium concentration was reduced with an increase in carrier concentration and the decrease in mobility was attributed to the ionized impurity scattering mechanism. In an optical transmittance, the shift of the optical absorption edge to shorter wavelength strongly depends on the electronic carrier concentration in the films.

  • PDF