• Title/Summary/Keyword: indium

Search Result 1,606, Processing Time 0.03 seconds

The Electrical and Optical Properties of Polymer Light Emitting Diode with ITO/PEDOT:PSS/MEH-PPV/Al Structure at Various Concentration of MEH-PPV (ITO/PEDOT:PSS/MEH-PPV/Al 구조에서 MEH-PPV 농도에 따른 유기발광다이오드의 전기$\cdot$광학적 특성)

  • Gong Su Cheol;Back In Jea;Yoo Jae Hyouk;Lim Hun Seung;Chang Ho Jung;Chang Gee Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.155-159
    • /
    • 2005
  • In this report, Polymer light emitting diodes (PLEDs) with an ITO/PEDOT:PSS/MEH-PPV/Al structure were prepared by spin coating method on the glass substrate patterned ITO (indium tin oxide), using PEDOT:PSS(poly(3,4=ethylenedioxythiophene):poly(styrene sulfolnate)) as the hole transfer material and MEH-PPV(poly(2-methoxy-5-(2-ethyhexoxy)-1,4-phenylenvinylene)) having a different concentration (0.1, 0.3, 0.5, 0.7, 0.9, 1.5 wt$\%$) as the emitting material. The electrical and optical properties of the prepared PLED samples were investigated. The good electrical and optical properties were observed for the PLED samples with a MEH-PPV concentration ranging from 0.5 to $0.9 wt\%$. However, the current and luminance values for PLED sample with $1.5 wt\%$ of MEH-PPV decreased greatly. The maximum luminance and light efficiency for the PLEDs with concentration of $0.5 wt\%$ MEH-PPV were $409 cd/m^2$ and 4.90 Im/W at 9 V, respectively. The emission spectrums were found to be $560{\~}585 nm$ in wavelength showing orange color.

  • PDF

Spectroelectrochemical Study for Thin Film of Gold Nanoparticles (금 나노입자 박막의 분광전기화학적 연구)

  • Seo, Seong S.;Chambers, James Q.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.32-36
    • /
    • 2006
  • films of gold nanoparticles were formed on indium tin oxide (ITO) by an electrodeposition method from an aminosilicate stabilized gold colloid solution. The thin films were examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), UV-visible, and energy dispersive X-ray spectroscopy (EDXS). The surface coverage of gold nanoparticles on the thin film was estimated to 1.2 nanomole/cm2. An anthraquinone-2, 6-disulfonic acid, disodium salt (AQDS) self-assembled layer was generated by immersing gold thin film into 1mM of AQDS in 0.1M HClO4 solution for over 20 hours. As a result, a new absorbance peak from the multi-layers (AQDS/thin film of gold /ITO) was obtained about at 690 nm. Also, the surface plasmon absorption of multi-layers was measured by UV-Visible spectrometer along with chronoamperometry by applying the various potentials from +0.5V to -0.5V. The maximum surface plasmon absorption band at 550 nm was decreased by applying negative potentials. The change of absorbance was correlated with the surface coverage of the AQDS indicating the pseudo-capacity surface state of the AQDS layer was coupled to the energy level of the plasmonband by applied negative potentials.

The Characteristic Improvement of Photodiode by Schottky Contact (정류성 접합에 의한 광다이오드의 특성 개선)

  • Hur Chang-wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1448-1452
    • /
    • 2004
  • In this paper, a photodiode capable of obtaining a sufficient photo/ dark current ratio at both a forward bias state and a reverse bias state is proposed. The photodiode includes a glass substrate, an Cr thin film formed as a lower electrode over the glass substrate, Cr silicide thin film(∼l00$\AA$) ) formed as a schottky barrier over the Cr thin film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the Cr silicide thin film. Transparent conduction film ITO (thickness 100nm) formed as an upper electrode over the hydro-generated amorphous silicon film is then deposited in pure argon at room temperature for the Schottky contact and light window. The high quality Cr silicide thin film using annealing of Cr and a-Si:H is formed and analyzed by experiment. We have obtained the film with a superior characteristics. The dark current of the ITO/a-Si:H Schottky at a reverse bias of -5V is ∼3$\times$IO-12 A/un2, and one of the lowest reported, hitherto. AES(Auger Electron Spectroscophy) measurements indicate that this notable improvement in device characteristics stems from reduced diffusion of oxygen, rather than indium, from the ITO into the a-Si:H layer, thus, preserving the integrity of the Schottky interface. The spectral response of the photodiode for wavelengths in the range from 400nm to 800nm shows the expected behavior whereby the photocurrent is governed by the absorption characteristics of a-Si:H.

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

Studies on Solvent Extraction and Analytical Applications of Metal-Dithiocarbamate Complexes(Ⅰ). Extraction and Determination of Trace Bismuth, Cadmium and Indium in Sea Water (Dithiocarbamate 금속착물의 용매추출 및 분석적 응용(제 1 보). 해수중 흔적량 비스무트, 카드뮴, 인듐의 용매추출 및 정량)

  • Jeon, Moon Kyo;Choi, Jong Moon;Choi, Hee Seon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.7
    • /
    • pp.492-500
    • /
    • 1996
  • The solvent extraction of trace Bi, Cd and In in seawater samples using ammonium pyrrolidine dithiocarbamate(APDC) as a complexing agent was studied. The pH of sample solution, the amount of APDC, the type of solvent and the shaking time were investigated together with back-extraction conditions. After the pH of 200 mL seawater was adjusted to 4.0 and 5.0 mL of 1% APDC was added, analytes were extracted with 10.0 mL of MIBK by shaking for 35 minutes. The organic phase seperated was washed with a 0.05 M NaOH 10.0 mL to remove HPDC. The analytes were stripped by the back-extraction of 5 minute shaking with 5 mL of 4 M HNO3 containing 150 ㎍/mL Pd(Ⅱ). Detection limits of Bi, Cd and In were 0.038, 0.0057 and 0.023 ng/mL, respectively. Both of Bi(Ⅲ) and In(Ⅲ) were not detected in two kinds of water samples of the East Sea and the contents of Cd(Ⅱ) were 0.018 and 0.016 ng/mL. The recoveries of over 90% showed that this procedure was applicable to the determination of such trace elements in seawater samples.

  • PDF

Preparation and Properties of UV Curable Phlorogulcinol Based Acrylate for PET Film (PET 필름용 UV 경화 플로로글루시놀계 아크릴레이트 제조 및 물성)

  • Choi, Jeon-Mo;Lee, Eun-Young;Kim, Sangyong;Cho, Jin-Ku;Kim, Baekjin;Lee, Sang-Hyeup;Kim, Hyun Joong
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.50-56
    • /
    • 2010
  • Polyethyleneterephthalate (PET) film is widely used in various industrial fields such as mobile phone, display pannel, notebook etc. Recently PET film attached on indium tin oxide (ITO) surface has a role of high pencil hardness, high refractive index etc. So we synthesized two types of multi-functional monomer which are epoxy modifed acrylate and unmodified acrylate type using recyclable resource like phloroglucinol, derived from trinitrotoluene. We studied the effect of multi-functional monomer's chemical structure on the various properties such as refractive index, optical transmittance, and pencil hardness. We characterized synthesized multi-functional monomer by qualitative analysis through H NMR. We observed that pencil hardness of 1,3,5-triepoxide benzene and 1,3,5-triacrylate benzene they have the range of 2~3 H at high UV dosage of 300 mW. Refractive index appeared the value of 1.54~1.57. Transmittance of all multi-functional monomers has more than 93%.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

A study on the oxide semiconductor $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, solar cells fabricated by two source evaporation (이가열원(二加熱源) 증착법(蒸着法)에 이한 산화물(酸化物) 반도체(半導體) $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, 태양전지(太陽電池)에 관한 연구(硏究))

  • Jhoon, Choon-Saing;Kim, Yong-Woon;Lim, Eung-Choon
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.62-78
    • /
    • 1992
  • The solar cells of $ITO_{(n)}/Si_{(p)}$, which are ITO thin films deposited and heated on Si wafer 190[$^{\circ}C$], were fabricated by two source vaccum deposition method, and their electrical properties were investigated. Its maximum output is obtained when the com- position of the thin film consist of indium oxide 91[mole %] and thin oxide 9[mole %]. The cell characteristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min]. Also, we investigated the spectral response with short circuit current of the cells and found that the increasing of the annealing caused the peak shifted to the long wavelength region. And by experiment of the X-ray diffraction, it is shown to grow the grains of the thin film with increasment of annealing temperature. The test results from the $ITO_{(n)}/Si_{(p)}$ solar cell are as follows. short circuit current : Isc= 31 $[mW/cm^2]$ open circuit voltage : Voc= 460[mV] fill factor : FF=0.71 conversion efficiency : ${\eta}$=11[%]. under the solar energy illumination of $100[mW/cm^2]$.

  • PDF

Influence of Oxygen Flow Ratio on the Properties of In2O3 Thin Films Grown by RF Reactive Magnetron Sputtering (라디오파 반응성 마그네트론 스퍼터링으로 증착된 In2O3 박막의 특성에 산소 유량비의 변화가 미치는 효과)

  • Kwak, Jun-Ho;Cho, Shin-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.224-229
    • /
    • 2010
  • Indium oxide $(In_2O_3)$ thin films have been prepared on glass substrate by using radio-frequency reactive magnetron sputtering with changing the oxygen flow ratio. The substrate temperature was kept at a fixed value of $400^{\circ}C$, and the sputtering gas and reactive gas were supplied with argon and oxygen, respectively. The oxygen partial flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 10%, 20%, 30%, 40%, and 50%. The optical, electrical, and structural properties of the deposited thin films were investigated by using ultraviolet-visible-near infrared spectrophotometer, Hall measurement, and X-ray diffractometer and scanning electron microscopy. The $In_2O_3$ thin film deposited at 20% of oxygen flow ratio showed an average transmittance of 86% in the wavelength range of 430~1,100 nm, an electrical resistivity of $1.1{\times}10^{-1}{\Omega}cm$. The results show that the transparent conducting films with optimum conditions can be achieved by controlling the oxygen flow ratio.