Browse > Article
http://dx.doi.org/10.5757/JKVS.2010.19.3.224

Influence of Oxygen Flow Ratio on the Properties of In2O3 Thin Films Grown by RF Reactive Magnetron Sputtering  

Kwak, Jun-Ho (Department of Electronic Materials Engineering, Silla University)
Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
Publication Information
Journal of the Korean Vacuum Society / v.19, no.3, 2010 , pp. 224-229 More about this Journal
Abstract
Indium oxide $(In_2O_3)$ thin films have been prepared on glass substrate by using radio-frequency reactive magnetron sputtering with changing the oxygen flow ratio. The substrate temperature was kept at a fixed value of $400^{\circ}C$, and the sputtering gas and reactive gas were supplied with argon and oxygen, respectively. The oxygen partial flow ratio was varied by controlling the amount of oxygen with respect to the total mixed gases, 10%, 20%, 30%, 40%, and 50%. The optical, electrical, and structural properties of the deposited thin films were investigated by using ultraviolet-visible-near infrared spectrophotometer, Hall measurement, and X-ray diffractometer and scanning electron microscopy. The $In_2O_3$ thin film deposited at 20% of oxygen flow ratio showed an average transmittance of 86% in the wavelength range of 430~1,100 nm, an electrical resistivity of $1.1{\times}10^{-1}{\Omega}cm$. The results show that the transparent conducting films with optimum conditions can be achieved by controlling the oxygen flow ratio.
Keywords
$In_2O_3$ thin film; RF reactive magnetron sputtering; Oxygen flow ratio;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 B. Radha Krishna, T. K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, Opt. Mater. 15, 217 (2000).   DOI
2 T. Gao and T. Wang, J. Cryst. Growth 290, 660 (2006).   DOI
3 S. T. Tan, X. M. Sun, X. H. Zhang, S. J. Chua, B. J. Chen, and C. C. Teo, J. Appl. Phys. 100, 033502 (2006).   DOI
4 Y. M. Lu, C. M. Chang, S. I. Tsai, and T. S. Wey, Thin Solid Films 447-448, 56 (2004).   DOI
5 조신호, 한국진공학회지 18, 377 (2009).   과학기술학회마을
6 F. O. Adurodija, L. Semple, and R. Bruning, Thin Solid Films 492, 153 (2005).   DOI
7 W. Y. Chung, G. Sakai, K. Shimanoe, N. Miura, D. Lee, and N. Yamazoe, Sens. Act. B 65, 312 (2000).   DOI
8 V. Korobov, M. Leibovitch, and Y. Shapira, Appl. Phys. Lett. 65, 2290 (1994).   DOI
9 Z. X. Mei, Y. Wang, X. L. Du, Z. Q. Zeng, M. J. Ying, H. Zheng, J. F. Jia, Q. K. Xue, and Z. Zhang, J. Cryst. Growth 289, 686 (2006).   DOI
10 H. Morikawa and M. Fujita, Thin Solid Films 359, 61 (2000).   DOI
11 V. Brinzari, G. Korotcenkov, and V. Matolin, Appl. Surf. Sci. 243, 335 (2005).   DOI
12 M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, V. Cimalla, and G. Kiriakidis, J. Appl. Phys. 90, 5382 (2001).   DOI
13 V. Senthilkumar and P. Vickraman, Curr. Appl. Phys. 10, 880 (2010).   DOI
14 P. Malar, B. C. Mohanty, and S. Kasiviswanathan, Thin Solid Films 488, 26 (2005).   DOI
15 Ch. Y. Wang, V. Cimalla, H. Romanus, Th. Kups, M. Niebelschutz, and O. Ambacher, Thin Solid Films 515, 6611 (2007).   DOI
16 T. Moriga, M. Mikawa, Y. Sakakibara, Y. Misaki, K. Murai, I. Nakabayashi, K. Tominaga, and J. B. Metson, Thin Solid Films 486, 53 (2005).   DOI
17 S. Cho, Trans. Electr. Electron. Mater. 10, 185 (2009).   DOI   ScienceOn
18 김희수, 한국진공학회지 18, 384 (2009).   과학기술학회마을