• Title/Summary/Keyword: indirect asphalt tension test

Search Result 6, Processing Time 0.022 seconds

Evaluation of Emergency Pothole Repair Materials using Polyurethane-Modified Asphalt Binder (폴리우레탄 개질 아스팔트 바인더를 사용한 포트홀 응급 보수재의 성능평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • PURPOSES : The objective of this study is to develop new pothole repair materials using polyurethane-modified asphalt binder, and to evaluate them relative to current pothole repair materials in order to improve the performance of repaired asphalt pavement. METHODS : In the laboratory, polyurethane-modified asphalt binder is developed, and then asphalt binder is added to produce pothole repair materials. In order to evaluate the properties of this new pothole repair material, both an indirect tension strength test and a direct tension strength test are performed to measure the material strength and bond strength, respectively. Additionally, the basic material properties are evaluated using the asphalt cold mix manual. The strength characteristics based on curing times are evaluated using a total of 7 types of materials (3 types of current materials, 2 types of new materials, and 2 types of moisture conditioned new materials). The indirect tension strength tests are conducted at 1, 2, 4, 8, 16, and 32 days of curing time. The bond strength between current HMA(Hot Mix Asphalt) and the new materials is evaluated by the direct tension strength test. RESULTS AND CONCLUSIONS : Overall, the new materials show better properties than current materials. Based on the test results, the new materials demonstrate less susceptibility to moisture, faster curing times, and an improved bond strength between HMA and the new materials. Therefore, the use of the new materials reported in this study may lead to enhanced performance of repairs made to asphalt pavement potholes.

Evaluation of Laboratory Performance Characteristics of Fiber-Reinforced Asphalt Concrete (섬유활용 아스팔트 콘크리트의 실험적 공용특성평가)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.61-72
    • /
    • 2002
  • The optimum fiber and asphalt binder contents were decided on the base of the Mashall mix design method. To compare the mechanical characteristics between the conventional(dense-graded 20) and the fiber-reinforced mixtures, indirect tension tests were conducted under three temperatures(5, 20, 60$^{\circ}C$). In particular, the wheel tracking tests were performed to evaluate the rutting resistances of the mixtures. Test results showed that the indirect tensile strength of fiber-reinforced asphalt concrete was higher than that of conventional one. The toughness of fiber-reinforced mixture was 1.27 to 1.97 times higher than that of conventional one, depending upon the temperature. In addition, the results of wheel tracking tests and the retained indirect splitting tension tests conducted at $60^{\circ}C$ revealed that the resistance to permanent deformation of fiber-reinforced mixture was stronger than that of the conventional one.

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

Development and Calibration of a Permanent Deformation Model for Asphalt Concrete Based on Shear Properties (아스팔트 콘크리트의 전단 물성을 고려한 영구변형 모형 개발 및 보정)

  • Lee, Hyun-Jong;Baek, Jong-Eun;Li, Qiang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This study developed a permanent deformation model for asphalt concrete based on shear properties. Repeated load triaxial compression (RLTC), triaxial compressive strength, and indirect tension strength tests were performed for the three types of asphalt mixtures at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. For the given mixtures, as testing temperature increased, cohesion decreased, but friction angle was insensitive to temperature at $40^{\circ}C$ or higher. It was observed that deviatoric stress, confining pressure, temperature, and load frequency affected the permanent deformation of asphalt mixtures significantly. The permanent deformation model based on shear stress to strength ratio and loading time was developed using the laboratory test results and calibrated using accelerated pavement test data. The proposed model was able to predict the permanent deformation of the asphalt mixtures in a wide range of loading and temperature conditions with constant model coefficients.

Development of Additive to Modify the SDAR (Solvent DeAsphalting Residue) and Laboratory Performance Evaluation of Asphalt Mixture with Modified SDAR (고품위화 정제공정 부산물(SDAR) 활용을 위한 첨가제 개발 및 이를 이용한 아스팔트 혼합물의 실내 공용성능 평가)

  • Baek, Cheolmin;Yang, Sung Lin;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.97-104
    • /
    • 2016
  • OBJECTIVES : The objective of this research is to develop additives for the modification of Solvent DeAsphalting Residue (SDAR) to be used as pavement materials, and evaluate the performance of asphalt mixture manufactured using the SDAR modified by developed additives. METHODS : The SDAR generally consists of more asphaltenes and less oil components compared to the conventional asphalt binder, and hence, the chemical/physical properties of SDAR are different from that of conventional asphalt binder. In this research, the additives are developed using the low molecular oil-based plasticizer to improve the properties of SDAR. First, the chemical property of two SDARs is analyzed using SARA (saturate, aromatic, resin, and asphaltene) method. The physical/rheological properties of SDARs and SDARs containing additives are also evaluated based on PG-grade method and dynamic shear-modulus master curve. Second, various laboratory tests are conducted for the asphalt mixture manufactured using the SDAR modified with additives. The laboratory tests conducted in this study include the mix design, compactibility analysis, indirect tensile test for moisture susceptibility, dynamic modulus test for rheological property, wheel-tracking test for rutting performance, and direct tension fatigue test for cracking performance. RESULTS : The PG-grade of SDARs is higher than PG 76 in high temperature grades and immeasurable in low temperature grades. The dynamic shear modulus of SDARs is much higher than that of conventional asphalt, but the modified SDARs with additives show similar modulus compared to that of conventional asphalt. The moisture susceptibility of asphalt mixture with modified SDARs is good if, the anti-stripping agent is included. The performance (dynamic modulus, rutting resistance, and fatigue resistance) of asphalt mixture with modified SDARs is comparable to that of conventional asphalt mixture when appropriate amount of additives is added. CONCLUSIONS : The saturate component of SDARs is much less than that of conventional asphalt, and hence, it is too hard and brittle to be used as pavement materials. However, the modified SDARs with developed additives show comparable or better rheological/physical properties compared to that of conventional asphalt depending on the type of SDAR and the amount of additives used.

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.