• Title/Summary/Keyword: independent power plant

Search Result 87, Processing Time 0.028 seconds

The Effects of Seismic Failure Correlations on the Probabilistic Seismic Safety Assessments of Nuclear Power Plants (지진 손상 상관성이 플랜트의 확률론적 지진 안전성 평가에 미치는 영향)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jeon, Bub-Gyu;Park, Dong-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.53-58
    • /
    • 2021
  • Nuclear power plant's safety against seismic events is evaluated as risk values by probabilistic seismic safety assessment. The risk values vary by the seismic failure correlation between the structures, systems, and components (SSCs). However, most probabilistic seismic safety assessments idealized the seismic failure correlation between the SSCs as entirely dependent or independent. Such a consideration results in an inaccurate assessment result not reflecting real physical phenomenon. A nuclear power plant's seismic risk should be calculated with the appropriate seismic failure correlation coefficient between the SSCs for a reasonable outcome. An accident scenario that has an enormous impact on a nuclear power plant's seismic risk was selected. Moreover, the probabilistic seismic response analyses of a nuclear power plant were performed to derive appropriate seismic failure correlations between SSCs. Based on the analysis results, the seismic failure correlation coefficient between SSCs was derived, and the seismic fragility curve and core damage frequency of the loss of essential power event were calculated. Results were compared with the seismic fragility and core damage frequency of assuming the seismic failure correlations between SSCs were independent and entirely dependent.

Reliability Analysis for Power Plants Based on Insufficient Failure Data (불충분한 고장 데이터에 기초한 발전소의 신뢰도 산정기법에 관한 연구)

  • 이승철;최동수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.401-406
    • /
    • 2003
  • Electric power industries in several countries are currently undergoing major changes, mainly represented by the privatizations of the power plants and distribution systems. Reliable operations of the power plants directly contribute to the revenue increases of the generation companies in such competitive environments. Strategic optimizations should be performed between the levels of the reliabilities to be maintained and the various preventive maintenance costs, which require the accurate estimations of the power plant reliabilities. However, accurate estimations of the power plant reliabilities are often limited by the lack of accurate power plant failure data. A power plant is not supposed to be failed that often. And if it fails, its impact upon the power system stability is quite substantial in most cases, setting aside the significant revenue losses and lowered company images. Reliability assessment is also important for Independent System Operators(ISO) or Market Operators to properly assess the level of needed compensations for the installed capacity based on the availability of the generation plants. In this paper, we present a power plant reliability estimation technique that can be applied when the failure data is insufficient. Median rank and Weibull distribution are used to accommodate such insufficiency. The Median rank is utilized to derive the cumulative failure probability for each ordered failure. The Weibull distribution is used because of its flexibility of accommodating several different distribution types based on the shape parameter values. The proposed method is applied to small size failure data and its application potential is demonstrated.

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

An Integrated Translation of Nuclear Power Plant Design Data ftom Specification-driven Plant Design Systems to a Neutral Product Model (사양 기반 플랜트 설계 시스템에서 생성된 원자력 플랜트 설계 데이터의 중립 모델로의 통합 변환)

  • Mun, Du-Hwan;Yang, Jeong-Sam;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.2
    • /
    • pp.96-104
    • /
    • 2009
  • It gradually becomes important to study on how to efficiently integrate and manage plant lifecycle data such as 2D schematic and 3D solid data, logical configuration data, and equipment specifications data. From this point of view, converting plant design data from various systems into neutral data independent from any commercial systems is one of important technologies for the operation and management of plants which usually have a very long period of life. In order to achieve this goal, a neutral model for efficient integration and management of plant data was defined. After schema mapping between one of specification-driven plant design systems and the neutral model was performed, a plant data translator is also implemented according to the mapping result. Finally, by experiments with nuclear power plant design, the feasibility of the translator was demonstrated.

Axial Shape Index Calculation for the 3-Level Excore Detector

  • Kim, Han-Gon;Kim, Yong-Hee;Kim, Byung-Sop;Lee, Sang-Hee;Cho, Sung-Jae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.97-102
    • /
    • 1997
  • A new method based on the alternating conditional expectation (ACE) algorithm is developed to calculate axial shape index (ASI) for the 3-level excore detector. The ACE algorithm, a type of non-parametric regression algorithms, yields an optimal relationship between a dependent variable and multiple independent variables. In this study, the simple correlation between ASI and excore detector signals is developed using the Younggwang nuclear power plant unit 3 (YGN-3) data without any preprocessing on the relationships between independent variables and dependent variable. The numerical results show that simple correlations exist between the three excore signals and ASI of the core. The accuracy of the new method is much better than those of the current CPC and COLSS algorithms.

  • PDF

FPGA application for wireless monitoring in power plant

  • Kumar, Adesh;Bansal, Kamal;Kumar, Deepak;Devrari, Aakanksha;Kumar, Roushan;Mani, Prashant
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1167-1175
    • /
    • 2021
  • The process of automation and monitoring in industrial control system involves the use of many types of sensors. A programmable logic controller plays an important role in the automation of the different processes in the power plant system. The major control units are boiler for temperature and pressure, turbine for speed of motor, generator for voltage, conveyer belt for fuel. The power plant units are controlled using microcontrollers and PLCs, but FPGA can be the feasible solution. The paper focused on the design and simulation of hardware chip to monitor boiler, turbine, generator and conveyer belt. The hardware chip of the plant is designed in Xilinx Vivado Simulator 17.4 software using VHDL programming. The methodology includes VHDL code design, simulation, verification and testing on Virtex-5 FPGA hardware. The system has four independent buzzers used to indicate the status of the boiler, generator, turbine motor and conveyer belt in on/off conditions respectively. The GSM is used to display corresponding message on the mobile to know the status of the device in on/off condition. The system is very much helpful for the industries working on plant automation with FPGA hardware integration.

A System Dynamics Model for Assessment of Organizational and Human Factor in Nuclear Power Plant (시스템 다이내믹스를 활용한 원전 조직 및 인적인자 평가)

  • 안남성;곽상만;유재국
    • Korean System Dynamics Review
    • /
    • v.3 no.2
    • /
    • pp.49-68
    • /
    • 2002
  • The intent of this study is to develop system dynamics model for assessment of organizational and human factors in nuclear power plant which can contribute to secure the nuclear safety. Previous studies are classified into two major approaches. One is engineering approach such as ergonomics and probability safety assessment(PSA). The other is social science approach such like sociology, organization theory and psychology. Both have contributed to find organization and human factors and to present guideline to lessen human error in NPP. But, since these methodologies assume that relationship among factors is independent they don't explain the interactions among factors or variables in NPP. To overcome these limits, we have developed system dynamics model which can show cause and effect among factors and quantify organizational and human factors. The model we developed is composed of 16 functions of job process in nuclear power, and shows interactions among various factors which affects employees' productivity and job quality. Handling variables such like degree of leadership, adjustment of number of employee, and workload in each department, users can simulate various situations in nuclear power plant in the organization side. Through simulation, user can get insight to improve safety in plants and to find managerial tools in the organization and human side. Analyzing pattern of variables, users can get knowledge of their organization structure, and understand stands of other departments or employees. Ultimately they can build learning organization to secure optimal safety in nuclear power plant.

  • PDF

A Study on the Independent Operation and Connected Operation of Microgrid (마이크로그리드의 독립운영 및 연계운영에 관한 연구)

  • Oh, Hyun-Ju;Park, Sung-Jun;Park, Seong-Mi;Kim, Chun-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1199-1206
    • /
    • 2022
  • Fossil fuels are one of the various energy sources used by humans, and industrial development has been achieved by relying on fossil fuels for a long time in the past. In order to respond to the depletion of fossil fuels and climate change, the world is trying to build an eco-friendly energy ecosystem. Research on efficiency improvement using renewable energy and ESS in various ways for energy conversion is being promoted. In this paper, a microgrid for industrial complexes was designed, constructed, and demonstrated. It was operated in two modes: an independent mode that each plant generates and uses independently and a connected operation mode that allows energy sharing between factories. In the case of independent mode, PV and PCS were intermittently stopped and restarted according to the status change of SoC section of each site. But, in the case of the connected operation mode, stable power supply was confirmed through power transaction through the operation of the entire SoC. This paper presented and verified an algorithm to stably supply power to industrial complexes consisting of various consumers with different load characteristics.

Development of intelligent distributed control system of electric precipitator in thermal power plant (화력발전소 전기집진기 지능형 분산제어시스템 개발)

  • Lee, Joo-Hyun;Lim, Ick-Hun;Ryu, Ho-Sun;Sin, Man-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.744-747
    • /
    • 2004
  • An electric precipitator in a thermal electric power plant is essential equipment for preventing air environment pollution. However, it is difficult for the existing control systems to make efficient effects on dust collection. This is because AVC and ERC consist of independent, separate systems in the existing systems. To solve this problem, we developed an intelligent distributed control system, which makes optimal control possible through connection operations between the control systems. In this paper, we analyzed system performance and fly ash reduction effects through the developed system structure, development contents and its actual application to power plant.

  • PDF