• Title/Summary/Keyword: indentation method

Search Result 292, Processing Time 0.023 seconds

Advanced Indentation Studies on the Effects of Hydrogen Attack on Tensile Property Degradation of Heat-Resistant Steel Heat-Affected Zones

  • Choi, Yeol;Jang, Jae-il;Lee, Yun-Hee;Kwon, Dongil;Kim, Jeong-Tae
    • Corrosion Science and Technology
    • /
    • v.2 no.6
    • /
    • pp.266-271
    • /
    • 2003
  • Safety diagnosis of various structural components and facilities is indispensable for preventing catastrophic failure of material by time-dependent and environment accelerating degradation. Also, this diagnosis of operating components should be done periodically for safe maintenance and economical repair. However, conventional standard methods for mechanical properties have the problems of bulky specimen, destructive procedure and complex procedure of specimen sampling. So, a non-destructive and simple mechanical testing method using small specimen is needed. Therefore, an advanced indentation technique was developed as a potential method for non-destructive testing of in-field structures. This technique measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation such as yield strength, tensile strength and work-hardening index. In this paper, we characterized the tensile properties including yield and tensile strengths of the V-modified Cr-Mo steels in petro-chemical and thermo-electrical plants. And also, the effects of hydrogen-assisted degradation of the V-modified Cr-Mo steels were analyzed in terms of work-hardening index and yield ratio.

A Conical Indentation Technique Based on FEA Solutions for Property Evaluation (유한요소해에 기초한 원뿔형 압입 물성평가법)

  • Hyun, Hong-Chul;Kim, Min-Soo;Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.859-869
    • /
    • 2009
  • The sharp indenters such as Berkovich and conical indenters have a geometrical self-similarity in theory, but different materials have the same load-depth curve in case of single indentation. In this study, we analyze the load-depth curves of conical indenter with angles of indenter via finite element method. From FE analyses of dual-conical indentation test, we investigate the relationships between indentation parameters and load-deflection curves. With numerical regressions of obtained data, we finally propose indentation formulae for material properties evaluation. The proposed approach provides stress-strain curve and the values of elastic modulus, yield strength and strain-hardening exponent with an average error of less than 2%. It is also discussed that the method is valid for any elastically deforming indenters made of tungsten carbide and diamond for instance. The proposed indentation approach provides a substantial enhancement in accuracy compared with the prior methods.

Evaluation of Indentation Fracture Toughens in Brittle Materials Based on FEA Solutions (유한요소해에 기초한 취성재료의 압입파괴인성평가)

  • Hyun, Hong Chul;Lee, Jin Heang;Felix, Rickhey;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1503-1512
    • /
    • 2013
  • In this study, we proposed an indentation evaluation method for fracture toughness using cohesive finite element simulations. First, we examined the effect of material properties (yield strain, Poisson's ratio, and elastic modulus) on crack size during Vickers indentation and then generated a regression formula that explains the relations among fracture toughness, indentation load, and crack size. We also proposed another indentation formula for fracture toughness evaluation using the contact size a and E/H (H: hardness). Finally, we examined the relation between the crack size and the indenter shapes. Based on this, we can generate from the formula obtained using the Vickers indenter a formula for an indenter of different shapes. Using the proposed method, fracture toughness is directly estimated from indentation data.

A Study on the Evaluation Method of Mechanical Properties by Ball Indentation Method (압입법을 이용한 재료 물성치 평가 기법에 관한 연구)

  • Seok, Chang-Seong;Kim, Jeong-Pyo;Song, Seong-Jin;Kim, Hun-Mo;Kim, Jae-Won;Kim, Su-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1903-1910
    • /
    • 2001
  • The BI(Ball Indentation) method has a potential to assess the mechanical properties and to replace conventional fracture tests. In this study, the BI test system has been developed to evaluate material properties. Tensile tests, fracture toughness tests, hardness tests and BI tests were performed by the system using four classes of thermally aged specimens. The results of the BI tests were in good agreement with fracture characteristics from a standard fracture test method.

Evaluation of Brinell Hardness of Coated Surface Using Finite Element Analysis: Part 1 - A Feasibility Study (유한요소해석에 의한 코팅면의 브리넬 경도 평가: 제1보 - 타당성 연구)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.378-384
    • /
    • 2020
  • The friction surfaces of mechanical parts are heat-treated or coated with hard materials to minimize wear. Increasing the hardness is a very useful way to reduce abrasive wear. The general Brinell hardness test, which is widely used for metallic materials, is not suitable because it hardly shows any change in hardness when coated with thin films. In this study, we propose a basis for the application of the new Brinell hardness test method to the coated friction surface. An indentation analysis of the rigid sphere and elastic-perfectly plastic materials is performed using a commercial finite element analysis software. The results indicate that their loadto-diameter ratio is the same; the Brinell hardness test method can be applied even when the indenter diameter is on the micrometer scale. In the case of hard coating, it is difficult to calculate Brinell hardness using the diameter of the indentation, but the study revealed, for the first time, that it can be calculated using the depth of the indentation regardless of coating. The change in hardness owing to thin film coating over a wide load range implies that the hardness evaluation method is appropriate. Additional studies on various properties related to the substrate and coating material are required to apply the proposed method.

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

A Study on Manufacturing Method of Nano-Micro Hybrid Pattern Using Indentation Machining Method and AAO Process (누름가공과 AAO 공정을 이용한 나노-마이크로 복합패턴 제작방법 연구)

  • Kim, Han-Hee;Jeon, Eun-Chae;Choi, Dae-Hee;Jang, Woong-Ki;Park, Yong-Min;Je, Tae-Jin;Choi, Doo-Sun;Kim, Byeong-Hee;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • Micro/nano patterns for optical concentration and diffusion have been studied in the various fields such as displays, optics, and sensors. Conventional micro patterns were continuous and linear shapes due to using linear-type light sources, however, recently non-continuous patterns have been applied as point sources are used for dot-type light sources such as LEDs and OLEDs. In this study, a hybrid machining technology combining an indentation machining method and an AAO process was developed for manufacturing the non-continuous micro patterns having nano patterns. First, mirror-like surfaces ($R_a<20nm$) of pure Aluminum substrates were obtained by optimizing cutting conditions. Then, The letter of 'K' consisting of the arrays of the micro patterns was manufactured by the indentation machining method which has a similar principle to indentation hardness testing. Finally, nano patterns were machined by AAO process on the micro patterns. Conclusively, a specific letter having nano-micro hybrid patterns was manufactured in this study.

Mechanical properties on nanoindentation measurements of osteonic lamellae in a human cortical bone (나노인덴테이션을 이용한 인체 피질골 골층판의 물성연구)

  • Choi Hwan-Seok;Song Jung-Il;Joo Won-Kyung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.527-528
    • /
    • 2006
  • In the proposed research plan, the effects of anisotropic and time-dependent mechanical properties on nanoindentation measurements of osteonic lamellae in a human cortical bone are investigated. The most popular method(Oliver-Pharr method) in nanoindentation data analysis is based on the assumption of elastic isotropy. Since cortical bone has exhibited anisotropy, it is necessary to consider the effects of anisotropy on nanoindentation measurement for cortical bone. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to effects of anisotropy. The mount of error depended on the indentation orientation. The indentation modulus results and were also similar to moduli calculated from mathematical model. The Oliver-Pharr method has been shown to be useful for providing first order approximations in analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

  • PDF

Derivation of work-hardening exponent using continuous indentation technique (연속압입시험법을 이용한 가공경화지수의 유도)

  • Jeon, Eun-Chae;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • In this study, we derived work-hardening exponent using continuous indentation test technique. Continuous indentation test technique is a powerful method to evaluate mechanical properties, such as hardness, modulus, ${\sigma}-{\varepsilon}$ curves and etc. It has many merits conventional indentation test has. The relationship between true stress and mean contact pressure and between strain and indentation depth were derived. While the indenter pushes the materials, the region around the indenter is deflected elastically. It is called elastic deflection. And pile-up phenomenon related to plastic deformation around the indenter increased the contact depth, and sink-in phenomenon decreases. So we calibrated contact depth change by considering elastic deflection and pile-up/sink-in. Using calibrated contact depth we redefined the relationship between true stress and mean contact pressure and between strain and contact depth. Through these relationship we could derive work-hardening exponent by analyzing load-depth curves. And it showed good agreement with tensile test results.

  • PDF

Development and its Performance Evaluation of a Depth-Sensing Micro-Indentation Testing Device (깊이 측정이 가능한 마이크로 압입 시험기 개발 및 성능평가)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2009
  • We developed a compact micro indentation testing device (designated SNUT) which is capable to measure Young's modulus of a sample using depth and applied load data during indentation. Performance of this device was evaluated using pure Ti, pure Ni, and die steel (SKD11). As a result of analysing the indentation test data, the frame compliance $C_f$ was found to influence mainly the modulus by 80% among several factors affecting accuracy of Young's modulus. Project area, which was determined by indirect indentation method, was modified using direct SEM observation. Finally, Young's modulus error was reduced to 5% after taking into consideration the frame compliance and modified projected area from 80% error without any these two correction factors. The performance of SNUT and MTS instruments was compared using same specimen (pure Ti).