• Title/Summary/Keyword: incubation time

Search Result 1,175, Processing Time 0.033 seconds

Studies on the Factors Influencing the Transformation in Escherichia with pBR322 DNA (Escherichia coli의 pBR322 DNA 형질전환에 관여하는 인자에 관한 연구)

  • Yoo, Han-sang;Mah, Jum-sool
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.1
    • /
    • pp.40-49
    • /
    • 1984
  • To investigate the factors influencing the artifical transformation in Escherichia coli, E. coli C600 was transformed by pBR322 DNA with tetracycline and ampicillin resistant gene purified by CsCl-Etbr equilibrium density gradient centrifugation from E.coli HB 101. The influencing factors in the transformation such as concentration of calcium chloride, time of ice incubation, temperature and time of heat shock, time of gene expression, effects of plasmid DNA concentration and adding time were examined in these experiments. The results obtained were as follows; 1. The highest transformation frequency was observed in the treatments of 100 mM $CaCl_2$ before heat shock and the treatment of $CaCl_2$ was essential step in the process of E. coli transformation. 2. The highest transformation frequency was observed in the treatment of heat shock at $42^{\circ}C$ for 4 min. or $37^{\circ}C$ for 6 min., but the prolonged heat shock resulted a decreased transformation frequency. 3. Treatments of ice incubation at $0^{\circ}C$ for 45 min. before heat stocks or at $0^{\circ}C$ for 30min. after heat shock resulted an increased transformation frequency. 4. There was a linear relationship between DNA concentration and transformation frequency at the concentration of $8{\times}10^3$ recipient cells. The highest transformation frequency reached in carte of 7 mcg of donor DNA, but above 1 mcg of DNA concentration, transformation frequency was not remarkably increased. Addition of donor DNA just after the treatment of $CaCl_2$ was the best. 5. The best condition of gene expression at $37^{\circ}C$ were 40min. for TC-resistant gene and 100min. for AP-resistant gene. TC-resistant gene was higher in the transformation frequency and faster in the gene expression time than AP-resistant gene. In these results, the best conditions for the transformation of E. coli C 600 with pBR322 DNA were: treatment with 100mM $CaCl_2$, ice incubation at $0^{\circ}C$ for 45 min, heat shock at $42^{\circ}C$ for 4 min., 30 min. of ice incubation and incubation at $37^{\circ}C$ for 100min. for gene expression in that order.

  • PDF

Statistical analysis of estimating incubation period distribution and case fatality rate of COVID-19 (COVID-19 바이러스 잠복 시간 분포 추정과 치사율 추정을 위한 생존 분석의 적용)

  • Ki, Han Jeong;Kim, Jieun;Kim, Sohee;Park, Juwon;Lee, Joohaeng;Kim, Yang-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.777-789
    • /
    • 2020
  • COVID-19 has been rapidly spread world wide since late December 2019. In this paper, our interest is to estimate distribution of incubation time defined as period between infection of virus and the onset. Due to the limit of accessibility and asymptomatic feature of COVID-19 virus, the exact infection and onset time are not always observable. For estimation of incubation time, interval censoring technique is implemented. Furthermore, a competing risk model is applied to estimate the case fatality and cure fraction. Based on the result, the mean incubation time is about 5.4 days and the fatality rate is higher for older and male patient and the cure rate is higher at younger,female and asymptomatic patient.

CAVITY FORMATION IN INTERFACE BETWEEN POWER LAW CREEP PARTICLE AND ELASTIC MATRIX SUBJECTED TO A UNIAXIAL STRESS

  • Lee, Yong-Sun;Ha, Young-Min;Hwang, Su-Chul
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.69-88
    • /
    • 1995
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. Through previous stress analysis related to the present physical model, the relaxation time is defined by ${\alpha}$2 which satisfies the equation $\Gamma$0 |1+${\alpha}$2k|m=1-${\alpha}$2 [19]. $\Gamma$0=2(1/√3)1+m($\sigma$$\infty$/2${\mu}$)m($\sigma$0/$\sigma$$\infty$tm) where $\sigma$$\infty$ is an applied stress, ${\mu}$ is a shear modulus of a matrix, $\sigma$$\infty$ is a material constant of a power law particle, $\sigma$=$\sigma$0 $\varepsilon$ and t elapsed time. the volume free energy associated with Helmholtz free energy includes strain energies associated with Helmholtz free energy includes strain energies caused by applied stress anddislocations piled up in interface (DPI). The energy due to DPI is found by modifying the results of Dundurs and Mura[20]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(${\gamma}$) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius ${\gamma}$ and incubation time t to maximize Helmholtz free energy is found in present analysis. Also, kinetics of cavity fourmation are investigated using the results obtained by Riede[16]. The incubation time is defied in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that [1] strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius ${\gamma}$ decreases or holds constant with increase of time until the kinetic condition(eq.40) is satisfied. Therefore the cavity may not grow right after it is formed, as postulated by Harris[11], and Ishida and Mclean[12], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f) and particle size on the incubation time are estimated using material constants of the copper as matrix.

Changes in Nutritive Value and Digestion Kinetics of Canola Seed Due to Microwave Irradiation

  • Ebrahimi, S.R.;Nikkhah, A.;Sadeghi, A.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.347-354
    • /
    • 2010
  • This study aimed to evaluate effects of 800 W microwave irradiation for 2, 4 and 6 min on chemical composition, antinutritional factors, ruminal dry matter (DM) and crude protein (CP) degradability, and in vitro CP digestibility of canola seed (CS). Nylon bags of untreated or irradiated CS were suspended in the rumen of three bulls from 0 to 48 h. Protein subfractions of untreated and microwave irradiated CS before and after incubation in the rumen were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Microwave irradiation had no effect on chemical composition of CS (p>0.05). There was a linear decrease (p<0.001) in the phytic acid and glucosinolate contents of CS as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased the phytic acid content of CS by 8.2, 27.6 and 48.6%, respectively. The total glucosinolate contents of CS microwave irradiated for 2, 4 and 6 min decreased by 41.5, 54.7 and 59.0% respectively, compared to untreated samples. The washout fractions of DM and CP and degradation rate of the b fraction of CP decreased linearly (p<0.001) as irradiation time increased. Microwave irradiation for 2, 4 and 6 min decreased effective degradability (ED) of CP at a ruminal outflow rate of 0.05 $h^{-1}$ by 4.7, 12.3 and 21.0%, respectively. Microwave irradiation increased linearly (p<0.001) in vitro CP digestibility of ruminally undegraded CS collected after 16 h incubation. Electrophoresis results showed that napin subunits of untreated CS disappeared completely within the zero incubation period, whereas cruciferin subunits were degraded in the middle of the incubation period (16 h incubation period). In 4 and 6 min microwave irradiated CS, napin subunits were degraded after 4 and 16 h incubation periods, respectively, and cruciferin subunits were not degraded untile 24 h of incubation. In conclusion, it seems that microwave irradiation not only protected CP of CS from ruminal degradation, but also increased in vitro digestibility of CP. Moreover, microwave irradiation was effective in reducing glucosinolate and phytic acid contents of CS.

Improvement of Occasional Artificial Hatching and Incubation Method in Diapause Egg of the Wild Silkmoth, Antheraea yamamai (천잠알의 수시부화 및 최청법 개선)

  • Yoon, Hyung-Joo;Kang, Pil-Don;Lee, Sang-Mong;Kim, Sam-Eun;Kim, Ki-Young
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.295-302
    • /
    • 2007
  • We investigated starvation of hatching larvae, occasional artificial hatching and incubation method to establish year-round rearing of the wild silkmoth, Antheraea yamamai. In the test of starvation of hatching larvae for brushing at a time, the survival rate of the fourth instar of larvae starved for 1 day after hatching in $25^{\circ}C\;and\;5^{\circ}C$ was 83.3% and 96.0%, respectively. The result represents that the survival rate is high at low temperature during starvation. In the occasional artificial hatching test for multi-times rearing of A. yamamai, the useful hatchability is high at $5^{\circ}C$ in case of preserving eggs for 2 months from incubation time, and at both $2.5^{\circ}C\;and\;0^{\circ}C$ in case of over 6 months. A new incubation method with pre-incubation at $15^{\circ}C$ and 24 D photoperiod showed high hatchability about 80% for only 2 days compared with hatching for 5-6 days in traditional incubation method with the preservation at $25^{\circ}C$.

A non-invasive sexing method reveals the patterns of sex-specific incubation behavior in Saunders's Gulls (Saundersilarus saundersi) (비침습적 성감별 방법에 의한 검은머리갈매기(Saundersilarus saundersi)의 암수 포란행동)

  • Joo, Eun-Jin;Ha, Mi-Ra;Jeong, Gilsang;Yoon, Jongmin
    • Korean Journal of Ornithology
    • /
    • v.25 no.2
    • /
    • pp.69-76
    • /
    • 2018
  • Sexual dimorphism in birds refers to male-female differences in body size, plumage, color and/or behavior. In general, many seabirds, including the family of Laridae, are monomorphic in plumage-color, which makes the determination of sex difficult in the field because both parents also tend to share a great portion of parental care. The development of an inexpensive sexing tool facilitates understanding the degree of sex-specific parental care in the evolution of the life history. Here, we developed a non-invasive method for the determination of sex using the bill-head morphometric of known captive pairs and applied this tool to wild pairs to document factors underlying male-female parental care during the incubation period of Saunders's gulls (Saundersilarus saundersi). Males exhibited relatively larger bill-head ratios than their mates within naturally formed pairs in captivity, resulting in the determination of sex in12 wild pairs at the nest during the incubation period. Males and females equally shared the incubation role during the daytime, attending the nest at a high rate of 95%. However, the male's proportion of nest attentiveness greatly increased with time towards sunset, presumably reflecting the male duty for nighttime incubation. The present study provides a non-invasive method for the determination of sex in a monomorphic seagull species and highlights how male-female incubation behavior is associated with time of the day, rather than other ecological conditions.

Ion-Sensitive Field Effect Transistor-Based Multienzyme Sensor for Alternative Detection of Mercury ions, Cyanide, and Pesticide

  • Vyacheslav, Volotovskky;Kim, Nam-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.373-377
    • /
    • 2003
  • Various groups of industrial and agricultural pollutants (heavy metal ions, cyanides, and pesticides) can be detected by enzymes. Since heavy metal ions inhibit urease, cyanides inhibit peroxidase, organophosphorus and carbamate pesticides inhibit butyrylcholinesterase, these enzymes were co-immobilized into a bovine serum albumin gel on the surface of an ion-sensitive field effect transistor to create a bioprobe that is sensitive to the compounds mentioned above. The sensitivity of the present sensor towards KCN corresponded to $1\;\mu\textrm{M}$ with 1 min of incubation time. The detection limits for Hg(II) ions and the pesticide carbofuran were 0.1 and $0.5\;\mu\textrm{M}$, respectively, when a 10 min sensor incubation time in contaminated samples was chosen. The total time for determining the concentrations of all species mentioned did not exceed 20 min.

Enumeration and Activity of Methanogenic Microorganisms of th Anaerobic Digestion Process

  • Lee, Kwang-Ho
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.115-126
    • /
    • 1991
  • The anaerobic digester with sludge from sewage treatment plant was operated in the laboratory for two year to investigate the enumeration and activity of methanogenic microorganisms. In this experimental study, the effects of HRT on the degradation characteristics of organic materials and on the number of methanogenic bacteria produced were investigated. By making the media with the repeated wxperiment, the number and activity of methanogenic bacteria were measured. The increase of the removal rate of organic acid in the digester was oberved at HRT of 2 days. The total number of methane forming bacteria estimated by the MPN method showed 2.3 $\times$ $ at HRT of 3 days, 7$\times$$ of 5 days and 7.9$\times$$ $/ml of 10 days. The optimum incubation time for measuring the number of methanogenic bacteria was found as more than four weeks. The PMA revealed 161ml CH$/l day at HRT of 10 days and the PUA 290mg COD/l day. At the incubation time 4.3 days, the maximum value of CH$ *59.1%) was found. At this time, $ was found as 15.3% and $ 25.6%.

  • PDF

Effects of Gamma-ray and Chemical Mutagens on the Germination and Seedling Growth in Stevia rebaudiana Bert. (감마선 및 화학적 돌연변이원 처리가 스테비아 (Stevia rebaudiana Bert.)의 종자 발아 및 초기 생장에 미치는 영향)

  • Yoon, Tai-Young;Kim, Ee-Youb;Kim, Young-Ho;Choi, Gin-Su;Hyun, Kyung-Sup;Seong, Yoon-Hee;Jo, Han-Jig;Kim, Dong Sub;Kang, Si-Yong;Ko, Jeong-Ae
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This study was carried out to develop the improved useful mutants for yield or composition of stevia plants using the gamma ray or chemical mutagens treatments. The seeds of stevia 'Suwon No. 11' were irradiated up to 400 Gy of gamma ray. Chemical mutagens were treated on the seeds of the 'Suwon No. 11' using 0.07% colchicine, 10 mM sodium azide, or 10 mM NMU for various durations. The germination rate, and shoot and root growth of seedling were estimated at 30 days after gamma ray irradiation or chemical mutagen treatment, and the plant height, the number of branches, and leaf length and width were examined at 3 months after mutagenesis treatments. In the case of gamma ray treatments, the germination rate and early-stage growth were decreased as the increase of radiation dose, and the 50% lethal dose was found to be 200 Gy. the plant height was decreased as the increase of radiation dose, while the number of branches per plant and leaf length were increased. Leaf shape was modified to the relatively longer one compared to the control, which was identified more apparently at the treatments of higher than 150 Gy. In the treatment of chemical mutagens, the rate of germination and survival were decreased as the increase of incubation time. The 50% lethal dose for germination rate were identified as the conditions of the 15 hours incubation in 0.07% colchicine, the 4 hrs in 10 mM sodium azide, and the 2 hrs in 10 mM NMU, in the three chemical mutagens treatments. Chemical mutagens had no influence on shoot growth, while root growth was increased, especially as the incubation time was extended. The highest root growth occurred in the NMU treatment at 6 hrs incubation time. The plant height was decreased as the increase of incubation time in the chemical mutagens treatments. Among the chemical mutagens, NMU was the most effective to induce the mutants with long-shaped or the least lobed leaves.

The Oxidative Effects of Benzo[a]pyrene in Rat Hepatocyte Primary Culture (랫드 간세포 일차배양에서 Benzo[a]pyrene의 산화 효과)

  • Im, Tae Jin
    • Journal of Environmental Science International
    • /
    • v.13 no.4
    • /
    • pp.413-420
    • /
    • 2004
  • The objectives of present study were to investigate the effects of benzo[a]pyrene(BaP) on cytotoxicity, lipid peroxidation and antioxidant enzymes in rat hepatocyte primary culture. Primary cultures of rat hepatocytes were incubated for 24 hr, 48 hr or 72 hr in the presence of various concentrations (0, 10, 20, 30, 50 or 100 $\mu.$ M) of BaP. Cytotoxicity and cell viability were determined by measuring glutamic oxaloacetic transaminase(GOT) activity, lactate dehydrogenase(LDH) activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MIT) value. Lipid peroxidation was evaluated using thiobarbituric acid reactive substances(TBARS) assay. Effects on antioxidant system were determined by measuring glutathione peroxidase(GPx) activity, glutathione reductase(GR) activity and glutathione concentration. Activities of GOT and LDH, MTT value as well as TBARS concentration were not affected by up to 100 $\muM$ of BaP for 24 hr incubation. However, BaP at the concentration of 50 $\muM$ for 48 hr incubation or at the concentration of 30 $\muM$ for 72 hr incubation began to increase LDH activity and TBARS concentration but decrease MTT value, representing that BaP caused cytotoxicity and decreased cell viability in dose- and time-dependent manners. GPx activity began to be decreased by BaP at the concentration of 50 $\muM$ for 72 hr incubation. Whereas, GR activity began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation. Glutathione concentration began to be decreased by BaP at the concentration of 20 $\muM$ for 72 hr incubation and was further reduced to 90% by 100 $\muM$ of BaP. These results demonstrate that BaP caused cytoctoxicity and decreased cell viability by increasing lipid peroxidation and decreasing glutathione concentration as well as activities of GPx and GR.