• 제목/요약/키워드: incremental dynamic analysis (IDA)

검색결과 100건 처리시간 0.026초

Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy

  • Mirtaheri, Masoud;Amini, Mehrshad;Khorshidi, Hossein
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.95-105
    • /
    • 2017
  • The use of superelastic shape memory alloys (SMAs) as reinforcements in concrete structures is gradually gaining interest among researchers. Because of different mechanical properties of SMAs compared to the regular steel bars, the use of SMAs as reinforcement in the concrete may change the response of structures under seismic loads. In this study, the effect of SMAs as reinforcement in concrete structures is analytically investigated for 3-, 6- and 8-story reinforced concrete (RC) buildings. For each concrete building, three different reinforcement details are considered: (1) steel reinforcement (Steel) only, (2) SMA bar used in the plastic hinge region of the beams and steel bar in other regions (Steel-SMA), and (3), beams fully reinforced with SMA bar (SMA) and steel bar in other regions. For each case, columns are reinforced with steel bar. Incremental Dynamic Analyses (IDA) are performed using ten different ground motion records to determine the seismic performance of Steel, Steel-SMA and SMA RC buildings. Then fragility curves for each type of RC building by using IDA results for IO, LS and CP performance levels are calculated. Results obtained from the analyses indicate that 3-story frames have approximately the same spectral acceleration corresponding with failure of frames, but in the cases of 6 and 8-story frames, the spectral acceleration is higher in frames equipped with steel reinforcements. Furthermore, the probability of fragility in all frames increases by the building height for all performance levels. Finally, economic evaluation of the three systems are compared.

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

무량복합 및 벽식 구조시스템의 내진성능평가 (Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures)

  • 강현구;이민희;김진구
    • 한국전산구조공학회논문집
    • /
    • 제25권3호
    • /
    • pp.259-266
    • /
    • 2012
  • 본 논문에서는 벽식 구조시스템의 일부 전단벽을 제거하여 공간의 가변성을 높인 무량복합 구조시스템의 내진성능을 ATC-63에 제시되어 있는 절차에 따라 파악하였으며, 동일한 규모의 벽식 구조시스템의 내진성능과 비교하였다. 해석모델로 12층 무량복합 및 벽식 구조시스템을 KBC 2009에 따라 설계하고 비선형 정적 및 비선형 증분 동적해석(IDA)을 수행하여 지진응답 및 붕괴거동을 파악하였다. 무량복합 시스템은 벽식 구조시스템 보다 적은 양의 콘크리트 물량으로 설계되었으며, 동일한 지진하중에 대하여 좀 더 큰 변위응답을 보이는 것으로 나타났다. IDA 해석결과 얻어진 붕괴 여유비(CMR)는 ATC-63에 제시된 한계상태를 만족하여 설계지진하중에 대하여 충분한 내진성능을 보유한 것으로 나타났다.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Seismic evaluation of isolated skewed bridges using fragility function methodology

  • Bayat, M.;Daneshjoo, F.;Nistico, N.;Pejovic, J.
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.419-427
    • /
    • 2017
  • A methodology, based on fragility functions, is proposed to evaluate the seismic performance of seismic isolated $45^{\circ}$ skewed concrete bridge: 1) twelve types of seismic isolation devices are considered based on two different design parameters 2) fragility functions of a three-span bridge with and without seismic isolation devices are analytically evaluated based on 3D nonlinear incremental dynamic analyses which seismic input consists of 20 selected ground motions. The optimum combinations of isolation device design parameters are identified comparing, for different limit states, the performance of 1) the Seismic Isolated Bridges (SIB) and 2) Not Seismic Isolated Bridge (NSIB) designed according to the AASHTO standards.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Seismic investigation of cyclic pushover method for regular reinforced concrete bridge

  • Shafigh, Afshin;Ahmadi, Hamid Reza;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.41-52
    • /
    • 2021
  • Inelastic static pushover analysis has been used in the academic-research widely for seismic analysis of structures. Nowadays, the variety pushover analysis methods have been developed, including Modal pushover, Adaptive pushover, and Cyclic pushover, in which some weaknesses of the conventional pushover method have been rectified. In the conventional pushover analysis method, the effects of cumulative growth of cracks are not considered on the reduction of strength and stiffness of RC members that occur during earthquake or cyclic loading. Therefore, the Cyclic Pushover Analysis Method (CPA) has been proposed. This method is a powerful technique for seismic evaluation of regular reinforced concrete buildings in which the first mode of them is dominant. Since the bridges have different structures than buildings, their results cannot necessarily be attributed to bridges, and more research is needed. In this study, a cyclic pushover analysis with four loading protocols (suggested by valid references) by the Opensees software was conducted for seismic evaluation of two regular reinforce concrete bridges. The modeling method was validated with the comparison of the analytical and experimental results under both cyclic and dynamic loading. The failure mode of the piers was considered in two-mode of flexural failure and also a flexural-shear failure. Along with the cyclic analysis, conventional analysis has been studied. Also, the nonlinear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. The time history of 20 far-field earthquake records was used to conduct IDA. After analysis, the base shear vs. displacement in the middle of the deck was drawn. The obtained results show that the cyclic pushover analysis method is able to evaluate an accurate seismic behavior of the reinforced concrete piers of the bridges. Based on the results, the cyclic pushover has proper convergence with IDA. Its accuracy was much higher than the conventional pushover, in which the bridge piers failed in flexural-shear mode. But, in the flexural failure mode, the results of each two pushover methods were close approximately. Besides, the cyclic pushover method with ACI loading protocol, and ATC-24 loading protocol, can provided more accurate results for evaluating the seismic investigation of the bridges, specially if the bridge piers are failed in flexural-shear failure mode.

철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템 (Equivalent SDF Systems Representing Steel Moment Resisting Frames)

  • 한상환;문기훈;김진선
    • 한국지진공학회논문집
    • /
    • 제12권3호
    • /
    • pp.21-28
    • /
    • 2008
  • 다자유도 시스템의 내진 성능을 평가하기 위해서는 반복적인 비선형 시간 이력 해석이 필요하며 이를 위해 많은 계산과정과 노력이 필요하다. 이와 같이 해석에 따르는 어려움을 보완하기 위해 복잡한 다자유도 시스템을 반영할 수 있는 등가 단자유도 시스템을 개발하였다. 등가 단자유도의 이력 모델로는 일반적으로 이선형 모델과 삼선형 모델이 사용된다. 이러한 모델은 탄성 거동 이후 음강성을 가질 수 있도록 하여 지진 발생 시 중력하중에 의한 발생되는 효과를 반영하기 위해서이다. 본 연구에서는 철골모멘트 골조의 실제 응답을 예측하기 위하여 이러한 이력 모델들로 거동하는 등가단자유도 시스템의 필요조건에 대하여 평가하였다. 이를 위해 본 연구에서는 로스엔젤레스 지역의 SAC 9층 모멘트 저항 골조를 비선형 다자유도 시스템과 등가단자유도 시스템으로 모델링하여 반복하중 푸쉬오버 해석, 비선형 시간 이력해석 및 IDA(Incremental Dynamic Analysis)를 수행하여 비교 검토하였다. 또한 본 연구에서는 강도저감 모델에 대해서도 평가를 수행하였다.

Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes

  • Mahmoodi, Khadije;Noorzad, Ali;Mahboubi, Ahmad
    • Computers and Concrete
    • /
    • 제26권6호
    • /
    • pp.483-495
    • /
    • 2020
  • Dams are vital infrastructures that are expected to maintain their stability during seismic excitations. Accordingly, cemented material dams are an emerging type, which are being increasingly used around the world owing to benefiting from advantages of both earth-fill and concrete gravity dams, which should be designed safely when subjected to strong ground motion. In the present paper, the seismic performance of a cemented sand and gravel (CSG) dam is assessed using incremental dynamic analysis (IDA) method by accounting for two failure modes of tension cracking and base joint sliding considering the dam-reservoir-foundation interactions. To take the seismic uncertainties into account, the dam is analyzed under a suite of ground motion records and then, the effect of friction angle for base sliding as well as deformability of the foundation are investigated on the response of dam. To carry out the analyses, the Cindere dam in Turkey is selected as a case study, and various limit states corresponding to seismic performance levels of the dam are determined aiming to estimate the seismic fragilities. Based on the results, sliding of the Cindere dam could be serious under the maximum credible earthquake (MCE). Besides, dam faces are mostly to be cracked under such level of intensity. Moreover, the results indicate that as friction angle increases, probability of sliding between dam and foundation is reduced whereas, increases tensile cracking. Lastly, it is observed that foundation stiffening increases the probability of dam sliding but, reduces the tensile damage in the dam body.

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan;Hussan, Mosaruf;Kim, Dookie;Nguyen, Phu-Cuong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.743-754
    • /
    • 2020
  • This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.