DOI QR코드

DOI QR Code

Distributed plasticity approach for the nonlinear structural assessment of offshore wind turbine

  • Tran, Thanh-Tuan (Institute of Offshore Wind Energy, Kunsan National University) ;
  • Hussan, Mosaruf (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Kim, Dookie (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Nguyen, Phu-Cuong (Faculty of Civil Engineering, Ho Chi Minh City Open University)
  • 투고 : 2019.11.14
  • 심사 : 2020.09.13
  • 발행 : 2020.12.31

초록

This study provides an insight of the nonlinear behavior of the Offshore Wind Turbine (OWT) structure using the distributed plasticity approach. The fiber section beam-column element is applied to construct the finite element model. The accuracy of the proposed model is verified using linear analysis via the comparison of the dynamic characteristics. For collapse risk assessment of OWT, the nonlinear effects considering the earthquake Incident Angle (IA) have been evaluated first. Then, the Incremental Dynamic Analysis (IDA) has been executed using a set of 20 near-fault records. Lastly, fragility curves are developed to evaluate the vulnerability of structures for different limit states. Attained results justify the accuracy of the proposed approach for the structural response against the ground motions and other environmental loads. It indicates that effects of static wind and wave loads along with the earthquake loads should be considered during the risk assessment of the OWT structure.

키워드

참고문헌

  1. Ahn, D., Shin, S.C., Kim, S.Y., Kharoufi, H., Kim, H.C., 2017. Comparative evaluation of different offshore wind turbine installation vessels for Korean westesouth wind farm. Int. J. Nav. Archit. Ocean Eng. 9, 45-54. https://doi.org/10.1016/j.ijnaoe.2016.07.004.
  2. Ancheta, T.D., Bozorgnia, Y., Chiou, B.S.-J., Stewart, J.P., Boore, D.M., Graves, R.W., Abrahamson, N.A., Campbell, K.W., Idriss, I.M., Youngs, R.R., Atkinson, G.M., 2012. PEER NGA-west 2 Database : a database of ground motions recorded in shallow crustal earthquakes in active tectonic. 15th World Conf. Earthq. Eng.
  3. Andreotti, G., Lai, C.G., 2017. A nonlinear constitutive model for beam elements with cyclic degradation and damage assessment for advanced dynamic analyses of geotechnical problems. Part II: validation and application to a dynamic soilestructure interaction problem. Bull. Earthq. Eng. 15, 2803-2825. https://doi.org/10.1007/s10518-017-0091-0.
  4. Asareh, M.A., Schonberg, W., Volz, J., 2016. Fragility analysis of a 5-MW NREL wind turbine considering aero-elastic and seismic interaction using finite element method. Finite Elem. Anal. Des. 120, 57-67. https://doi.org/10.1016/j.finel.2016.06.006.
  5. Asareh, M.A., Schonberg, W., Volz, J., 2015. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines. Renew. Energy 86, 49-58. https://doi.org/10.1016/j.renene.2015.07.098.
  6. Athanatopoulou, A.M., 2005. Critical orientation of three correlated seismic components. Eng. Struct. 27, 301-312. https://doi.org/10.1016/j.engstruct.2004.10.011.
  7. Baker, J.W., 2015. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 31.
  8. Cao, A.T., Tran, T.T., Nguyen, T.H.X., Kim, D., 2019. Simplified approach for seismic risk assessment of cabinet facility in nuclear power plants based on cumulative absolute velocity. Nucl. Technol. 206, 1-15. https://doi.org/10.1080/00295450.2019.1696643.
  9. Clough, R.W., Benuska, K.L., 1967. Nonlinear earthquake behavior of tall buildings. J. Eng. Mech. Div. 93, 129-146. https://doi.org/10.1061/JMCEA3.0000855
  10. Duenas-Osorio, L., Basu, B., 2008. Unavailability of wind turbines due to wind-induced accelerations. Eng. Struct. 30, 885-893. https://doi.org/10.1016/j.engstruct.2007.05.015.
  11. Ellingwood, B.R., Celik, O.C., Kinali, K., 2007. Fragility assessment of building structural systems in Mid-America. Earthq. Eng. Struct. Dynam. 36, 1935-1952. https://doi.org/10.1002/eqe.693.
  12. Feyzollahzadeh, M., Mahmoodi, M.J., Yadavar-Nikravesh, S.M., Jamali, J., 2016. Wind load response of offshore wind turbine towers with fixed monopile platform. J. Wind Eng. Ind. Aerod. 158, 122-138. https://doi.org/10.1016/j.jweia.2016.09.007.
  13. Hussan, M., Rahman, M.S., Sharmin, F., Kim, D., Do, J., 2018. Multiple tuned mass damper for multi-mode vibration reduction of offshore wind turbine under seismic excitation. Ocean. Eng. 160, 449-460. https://doi.org/10.1016/j.oceaneng.2018.04.041.
  14. Jonkman, J., Butterfield, S., Musial, W., Scott, G., 2009. Definition of a 5-MW Reference Wind Turbine for Offshore System Development.
  15. Jonkman, J.M., 2009. Dynamics of offshore floating wind turbines-model development and verification. Wind Energy 12, 459-492. https://doi.org/10.1002/we.347.
  16. Kim, D.H., Lee, S.G., Lee, I.K., 2014. Seismic fragility analysis of 5MW offshore wind turbine. Renew. Energy 65, 250-256. https://doi.org/10.1016/j.renene.2013.09.023.
  17. Kjorlaug, R.A., Kaynia, A.M., Elgamal, A., 2014. Seismic response of wind turbines due to earthquake and wind loading. Proceedings of the EURODYN 9th International Conference on Structural Dynamics. Porto, Portugal.
  18. Kojima, K., Takewaki, I., 2016. Closed-form critical earthquake response of elasticeplastic structures on compliant ground under near-fault ground motions. Front. Built Environ 2, 1. https://doi.org/10.3389/fbuil.2016.00001.
  19. Kojima, K., Takewaki, I., 2015. Critical earthquake response of elasticeplastic structures under near-fault ground motions (Part 1: fling-step input). Front. Built Environ. 1, 12. https://doi.org/10.3389/fbuil.2015.00012.
  20. Lai, W.-J., Lin, C.-Y., Huang, C.-C., Lee, R.-M., 2016. Dynamic analysis of jacket substructure for offshore wind turbine generators under extreme environmental conditions. Appl. Sci. 6, 307. https://doi.org/10.3390/app6100307.
  21. Li, H., Hu, Z., Wang, J., Meng, X., 2018. Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads. Int. J. Nav. Archit. Ocean Eng. 10, 9-20. https://doi.org/10.1016/j.ijnaoe.2017.05.003.
  22. Meng, X., Chen, G., Zhu, G., Zhu, Y., 2019. Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN. Int. J. Nav. Archit. Ocean Eng. 11, 22-32. https://doi.org/10.1016/j.ijnaoe.2017.12.001.
  23. Murtagh, P.J., Basu, B., Broderick, B.M., 2005. Along-wind response of a wind turbine tower with blade coupling subjected to rotationally sampled wind loading. Eng. Struct. 27, 1209-1219. https://doi.org/10.1016/j.engstruct.2005.03.004.
  24. Nguyen, P.C., Kim, S.E., 2018. A new improved fiber plastic hinge method accounting for lateral-torsional buckling of 3D steel frames. Thin-Walled Struct. 127, 666-675. https://doi.org/10.1016/j.tws.2017.12.031.
  25. Nguyen, P.C., Kim, S.E., 2017. Investigating effects of various base restraints on the nonlinear inelastic static and seismic responses of steel frames. Int. J. Non Lin. Mech. 89, 151-167. https://doi.org/10.1016/j.ijnonlinmec.2016.12.011.
  26. Nuta, E., 2010. Seismic Analysis of Steel Wind Turbine Towers in the Canadian Environment. University of Toronto, Canada.
  27. Penzien, J., Watabe, M., 1974. Characteristics of 3-dimensional earthquake ground motions. Earthq. Eng. Struct. Dynam. 3, 365-373. https://doi.org/10.1002/eqe.4290030407.
  28. Pham, T.D., Shin, H., 2019. Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: model-I. Int. J. Nav. Archit. Ocean Eng. 11, 980-992. https://doi.org/10.1016/j.ijnaoe.2019.04.005.
  29. Prowell, I., Elgamal, A., Jonkman, J., 2009. FAST Simulation of Wind Turbine Seismic Response.
  30. Salman, K., Tran, T.T., Kim, D., 2020. Seismic capacity evaluation of NPP electrical cabinet facility considering grouping effects. J. Nucl. Sci. Technol. 57, 1-13. https://doi.org/10.1080/00223131.2020.1724206.
  31. Sharmin, F., Hussan, M., Kim, D., 2017a. Effect of structural nonlinearity on probabilistic risk assessment of offshore wind turbine including inelastic soil medium. Civ. Eng. Environ. Syst. 34, 221-237. https://doi.org/10.1080/10286608.2018.1431625.
  32. Sharmin, F., Hussan, M., Kim, D., Cho, S.G., 2017b. Influence of soil-structure interaction on seismic responses of offshore wind turbine considering earthquake incident angle. Earthq. Struct. 13, 39-50. https://doi.org/10.12989/eas.2017.13.1.039.
  33. Shinozuka, M., Feng, M.Q., Lee, J., Naganuma, T., 2000. Statistical analysis of fragility curves. J. Eng. Mech. 126, 1224-1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  34. Smeby, W., der Kiureghian, A., 1985. Modal combination rules for multicomponent earthquake excitation. Earthq. Eng. Struct. Dynam. 13, 1-12. https://doi.org/10.1002/eqe.4290130103.
  35. Song, H., Damiani, R., Robertson, A., Jonkman, J., 2013. New structural-dynamics module for offshore multimember substructures within the wind turbine computer-aided engineering tool FAST. Offshore and Polar Engineering Conference - ISOPE 2013. Anchorage, Alaska.
  36. Taucer, F.F., 1991. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures.
  37. Tran, T.-T., Cao, A.-T., Kim, D.. VC4OWT: MATLAB interface for vibration control of offshore wind turbine 530-536. https://doi.org/10.1007/978-981-13-2306-5_75.
  38. Tran, T.-T., Nguyen, T.-H., Kim, D., 2018. Seismic incidence on base-isolated nuclear power plants considering uni- and bi-directional ground motions. J. Struct. Integr. Maint. 3, 86-94. https://doi.org/10.1080/24705314.2018.1461547.
  39. Tran, T., Nguyen, T., Park, J., Kim, D., 2017. Nonlinear behaviour of reinforced concrete structures using incremental dynamic analysis considering height effects. The 8th Asia and Pacific Young Researchers and Graduates Symposium (YRGS 2017) (Tokyo, Japan).
  40. Vamvatsikos, D., Cornell, C.A., 2002. Incremental dynamic analysis. Earthq. Eng. Struct. Dynam. 31, 491-514. https://doi.org/10.1002/eqe.141.
  41. Van Tu, N., Kim, D., 2013. Influence of incident angles of earthquakes on inelastic responses of asymmetric-plan structures. Struct. Eng. Mech. 45, 369-385. https://doi.org/10.12989/sem.2013.45.3.373.
  42. Vemula, N.K., DeVries, W., Fischer, T., Cordle, A., Schmidt, B., 2010. Design Solution for the Upwind Reference Offshore Support Structure.
  43. Wilson, E.L., Button, M.R., 1982. Three-dimensional dynamic analysis for multicomponent earthquake spectra. Earthq. Eng. Struct. Dynam. 10, 471-476. https://doi.org/10.1002/eqe.4290100309.
  44. Witcher, D., 2005. Seismic analysis of wind turbines in the time domain. Wind Energy 8, 81-91. https://doi.org/10.1002/we.135.
  45. Zhang, J., Huo, Y., 2009. Evaluating effectiveness and optimum design of isolation devices for highway bridges using the fragility function method. Eng. Struct. 31, 1648-1660. https://doi.org/10.1016/j.engstruct.2009.02.017.
  46. Zuo, H., Bi, K., Hao, H., 2017. Using multiple tuned mass dampers to control offshore wind turbine vibrations under multiple hazards. Eng. Struct. 141, 303-315. https://doi.org/10.1016/j.engstruct.2017.03.006.