• Title/Summary/Keyword: increasing loading

Search Result 1,202, Processing Time 0.028 seconds

An Experimental Study on the Liquefaction Behavior under Various Loading Conditions (다양한 입력하중에서의 액상화 발생 특성 비교 연구)

  • Kim, Soo-Il;Hwang, Seon-Ju;Park, Keun-Bo;Choi, Jae-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.320-327
    • /
    • 2005
  • Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal, wedge, increasing wedge and real earthquake loading are investigated focusing on the excess pore water pressure build up instead of liquefaction resistance strength in this paper. There are large differences between two types of earthquake loading - impact and vibration in liquefaction characteristics. The angle of phase change line of sinusoidal loading is very close to the vibration type, whereas the cumulative deviator stress and cumulative plastic strain are larger than two types of real earthquake loadings. On the other hand, the liquefaction characteristics of increasing wedge loadings are located in the range between vibration and impact earthquake loadings. It is concluded that the sinusoidal loading overestimates the resistance of soil under real earthquake loading. Based on results obtained, the increasing wedge loading can reflect the liquefaction behavior under real earthquake loadings more efficiently than sinusoidal loading based on equivalent uniform stress concept.

  • PDF

Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests

  • Tang, Lian Sheng;Chen, Hao Kun;Sun, Yin Lei;Zhang, Qing Hua;Liao, Hua Rong
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.113-124
    • /
    • 2018
  • Under repeated loading, the residual stresses within the subgrade and subsoil can accelerate the deformation of the road structures. In this paper, a series of laboratory cyclic loading model tests and small-scale model tests were conducted to investigate the dynamic stress response within soils under different loading conditions. The experimental results showed that a dynamic stress accumulation effect occurred if the soil showed cumulative deformation: (1) the residual stress increased and accumulated with an increasing number of loading cycles, and (2) the residual stress was superimposed on the stress response of the subsequent loading cycles, inducing a greater peak stress response. There are two conditions that must be met for the dynamic stress accumulation effect to occur. A threshold state exists only if the external load exceeds the cyclic threshold stress. Then, the stress accumulation effect occurs. A higher loading frequency results in a higher rate of increase for the residual stress. In addition to the superposition of the increasing residual stress, soil densification might contribute to the increasing peak stress during cyclic loading. An increase in soil stiffness and a decrease in dissipative energy induce a greater stress transmission within the material.

On the Development of Robot based Automation System for Loading Cargo in Small and Medium Sub Terminals

  • Park, Jae Min;Lee, Sang Min;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.90-96
    • /
    • 2021
  • The logistics market is continuously growing due to the development of technology and the growth of the online market. In addition, the social atmosphere that emphasizes non-face-to-face due to the pandemic situation is accelerating the growth of logistics. Delivery of goods ordered online requires delivery process through courier worker. In order for the courier worker to ship the product, the work of loading the product on the truck must be preceded. The accident caused by such delivery and loading work is increasing and it is emerging as a social problem. This study proposes a robot-based automated loading system to efficiently handle the increasing volume of courier service and to construct a more efficient and safe working environment by replacing the physical labor that was overloaded to courier workers. The proposed system replaces the loading of the courier worker and proposes the optimal loading function through the automation system.

A Study on the Loading Capacity Standard of Bi-directional Pile Load Test (BD PLT) (양방향말뚝재하시험의 재하용량 기준에 관한 연구)

  • Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6C
    • /
    • pp.379-388
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load tests of Mega pile foundations, loading capacity standard is not specified exactly. Therefore there are so many confusions in performing the BD PLT and variations up to maximum 2 times in loading capacity are come out. In this study, standards of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio, loading capacity increasing ratio and sufficiency ratio of design load were analyzed. It could be known that the loading capacity standard of bi-directional pile load test must be defined as 1-directional loading capacity and also must be established as more than 2 times of design load.

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.

Bridging Effect and Fatigue Crack Growth of Silicon Nitride (질화규소의 피로균열진전과 입자가교효과)

  • 유성근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1203-1208
    • /
    • 1996
  • Crack growth tests on silicon nitride have been made to clarify the crack growth characteristics under static and cyclic loading. Under constant K(K: stress intensity factor) static loading the crack growth rate in silicon nitride decreases with increasing crack extension and is finally arrested. The cack growth resistiance is largely reduced by the application of stress cycling and though the crack growth resistiacne increases with increasing of crack extension the increasing rate is much smaller under cyclic loading than under static loading.

  • PDF

Evaluation of Liquefiable Soils by Energy Concept (에너지 개념에 기초한 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Sun, Yu-Jung;Park, Keun-Bo;Park, Seong-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.590-599
    • /
    • 2006
  • In this study, Liquefaction characteristics of saturated sand under various dynamic loadings such as sinusoidal loading, increasing wedge loading, and real earthquake loading were investigated focusing on the dissipated energy. From the results of cyclic triaxial test, liquefaction resistance strength was calculated by the concept of energy according to the type of input loading. Liquefaction resistance strength was expressed in accumulated dissipated energy calculated from stress-strain curve(hysteresis loop). The dissipated energy according to loading type was compared and the energy-based evaluation was proposed. The procedures are presented in terms of normalized energy demand(NED), normalized energy capacity(NEC), and factor of safely, where NED is the load imparted to the soil by the loading(both amplitude and duration), NEC is the demand required to induce liquefaction, and factor of safely is defined as the ratio of NEC and NED.

  • PDF

Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading

  • Esfandiari, Soheil;Esfandiari, Javad
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.319-332
    • /
    • 2016
  • In most cases strengthening reinforced concrete columns exposed to high strain rate is to be expected especially within weak designed structures. A special type of loading is instantaneous loading. Rapid loading can be observed in structural columns exposed to axial loads (e.g., caused by the weight of the upper floors during a vertical earthquake and loads caused by damage and collapse of upper floors and pillars of bridges).Subsequently, this study examines the behavior of reinforced concrete columns under rapid loading so as to understand patterns of failure mechanism, failure capacity and strain rate using finite element code. And examines the behavior of reinforced concrete columns at different support conditions and various loading rate, where the concrete columns were reinforced using various counts of FRP (Fiber Reinforcement Polymer) layers with different lengths. The results were compared against other experimental outcomes and the CEB-FIP formula code for considering the dynamic strength increasing factor for concrete materials. This study reveals that the finite element behavior and failure mode, where the results show that the bearing capacity increased with increasing the loading rate. CFRP layers increased the bearing capacity by 20% and also increased the strain capacity by 50% through confining the concrete.

A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT) (양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구)

  • Choi, Yong-Kyu;Seo, Jeong-Hae;Kim, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.