• Title/Summary/Keyword: increase ratio

Search Result 10,258, Processing Time 0.029 seconds

Experimental study on shear damage and lateral stiffness of transfer column in SRC-RC hybrid structure

  • Wu, Kai;Zhai, Jiangpeng;Xue, Jianyang;Xu, Fangyuan;Zhao, Hongtie
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.335-349
    • /
    • 2019
  • A low-cycle loading experiment of 16 transfer column specimens was conducted to study the influence of parameters, likes the extension length of shape steel, the ratio of shape steel, the axial compression ratio and the volumetric ratio of stirrups, on the shear distribution between steel and concrete, the concrete damage state and the degradation of lateral stiffness. Shear force of shape steel reacted at the core area of concrete section and led to tension effect which accelerated the damage of concrete. At the same time, the damage of concrete diminished its shear capacity and resulted in the shear enlargement of shape steel. The interplay between concrete damage and shear force of shape steel ultimately made for the failures of transfer columns. With the increase of extension length, the lateral stiffness first increases and then decreases, but the stiffness degradation gets faster; With the increase of steel ratio, the lateral stiffness remains the same, but the degradation gets faster; With the increase of the axial compression ratio, the lateral stiffness increases, and the degradation is more significant. Using more stirrups can effectively restrain the development of cracks and increase the lateral stiffness at the yielding point. Also, a formula for calculating the yielding lateral stiffness is obtained by a regression analysis of the test data.

Temperature development and cracking characteristics of high strength concrete slab at early age

  • Wu, Chung-Hao;Lin, Yu-Feng;Lin, Shu-Ken;Huang, Chung-Ho
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.747-756
    • /
    • 2020
  • High-strength concrete (HSC) generally is made with high amount of cement which may release large amount of hydration heat at early age. The hydration heat will increase the internal temperature of slab and may cause potential cracking. In this study, slab specimens with a dimension of 600 × 600 × 100 mm were cast with concrete incorporating silica fume for test. The thermistors were embedded in the slabs therein to investigate the interior temperature development. The test variables include water-to-binder ratio (0.25, 0.35, 0.40), the cement replacement ratio of silica fume (RSF; 5 %, 10 %, 15 %) and fly ash (RFA; 10 %, 20 %, 30 %). Test results show that reducing the W/B ratio of HSC will enhance the temperature of first heat peak by hydration. The increase of W/B decrease the appearance time of second heat peak, but increase the corresponding maximum temperature. Increase the RSF or decrease the RFA may decrease the appearance time of second heat peak and increase the maximum central temperature of slab. HSC slab with the range of W/B ratio of 0.25 to 0.40 may occur cracking within 4 hours after casting. Reducing W/B may lead to intensive cracking damage, such as more crack number, and larger crack width and length.

Ratio of predicted and observed natural frequency of finite sand stratum

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavendra Rao, M.V.;Raghunandan, M.E.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.219-239
    • /
    • 2009
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios and underlain by either rigid concrete base or natural red-earth base. A comparative study of the ratio of predicted and observed natural frequency ratio of the finite sand stratum was made using the calculated values of equivalent stiffness suggested by Gazetas (1983) and Baidya and Muralikrishna (2001). Comparison of results between model footings resting on finite sand stratum underlain by the rigid concrete base and the natural red-earth base showed that, the presence of a finite base of higher rigidity increases the resonant frequency significantly. With increase in H/B ratio beyond 2.0, the influence of both the rigid concrete and natural red-earth base decreases. Increase in the contact area of the footing increases the resonant frequency of the model footings resting on finite sand stratum underlain by both the types of finite bases. Both the predicted and the observed resonant frequency ratio decreases with increase in force rating and height to width ratio for a given series of model footing.

Cementing Efficiency of Fly-ash in Mortar Matrix According to Binder-Water Ratio and Fly-ash Replacement Ratio

  • Cho, Hong-Bum;Jee, Nam-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.194-202
    • /
    • 2012
  • This paper predicts the cementing efficiency of fly-ash(FA) based on mortar test considering binder-water ratio and FA replacement ratio as experimental variables. The cementing efficiency prediction model proposed by statistical analysis enables us to estimate the value according to the binder-water ratio and FA replacement ratio of matrix. When FA replacement ratio is the same, the lower the binder-water ratio, the higher the estimated cementing efficiency. There are significant differences in the values according to binder-water ratio at FA replacement ratios of 15% or less, but there are almost no differences when FA replacement ratio is more than 15%. As the binder-water ratio increases, the variations in the values according to FA replacement ratio are great at FA replacement ratios of 15% or less. As the FA replacement ratios increase, the values increase for FA replacement ratios of 15% or less, but decrease for more than 15%. The values range from -0.71 to 1.24 at binder-water ratio of 1.67-2.86 and FA replacement ratio of 0-70%. The RMSE of the 28-day compressive strength predicted by modified water-cement ratio is 2.2 MPa. The values can be trusted, as there is good agreement between predicted strength and experimental strength.

The Effect of Ambient Gas Density on the Development of Impinging Diesel Spray (분무실 밀도 변화가 충돌 디젤분무 특성에 미치는 영향)

  • Kim, J.H.;Lee, B.S.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1999
  • Experimental investigation of unsteady impinging diesel spray on the flat plate have been carried out using high speed camera and Malvern system. The density ratios of ambient gas to diesel fuel were varied using $N_2$ and Ar gas in the case of 14.9, 21.2, 28.4, 35.1, 40.4, and 50.1. With the increase of gas density ratio, the radial penetration is decreased due to the resistance of the ambient gas. With the increase of the gas density ratio and the distance between nozzle tip and flat plate, the height of spray is increased due to the entrance and circulation. With the increase of gas density ratio, SMD is decreased on the nearby position at the center of flat plate, but SMD is increased on the far position. As the distance between nozzle tip and flat plate is increased, SMD is always decreased.

  • PDF

Optimized mix design of rapid-set lightweight-formed mortar for backfill (굴착복구용 속경성 경량기포 시멘트 모르타르의 최적 배합 도출을 위한 기초 물성 연구)

  • An, Ji-Hwan;Jeon, Sung-il
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSES : The objective of this study is to develop an optimized method of mix design for rapid-set lightweight-formed mortar mix. To achieve this objective, the workability, setting time, and compressive strength of mixes under various conditions of mix design were evaluated. METHODS : The water-bonder ratio, fly-ash substitution ratio, and forming agent injection amount were selected as design variables in the study. The fluidity, setting time, density, and strength of the mortar mix were considered as major evaluation criteria of the mixture, and were subsequently utilized to evaluate the characteristics of the mortar mix under various conditions. RESULTS : The observations made from the mix design process are as follows: 1) the air content and fluidity increase as the forming agent ratio and forming agent ratio increase, respectively; 2) the maximum air content is approximately 20%; 3) the accelerating agent decreases the fluidity of the mortar mix by 15% on average; 4) the forming agent injection ratio and fly-ash substitution ratio yield significant effects on the initial and final set times of the mortar mix; 5) as the forming agent injection ratio and fly-ash substitution ratio increase, the compressive strength of the mortar mix decreases; and 6) the 28-day compressive strengths of the forming agent injection ratio and fly-ash substitution ratio yield the most significant effects. CONCLUSIONS : It is concluded that the governing design variables for the rapid-set lightweight-formed mortar mix are the forming agent injection ratio and fly-ash substitution ratio.

Variation of Stress Concentration Ratio with Area Replacement Ratio for SCP-Reinforced Soils under Quay Wall (치환율에 따른 안벽구조물 하부 SCP 복합지반의 응력분담비)

  • 김윤태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.18-26
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay, sand compaction pile method (SCP) has usually been applied. SCP-reinforced ground is composite soil which consists of the sand pile and the surrounding soft soil. One of main important considerations in design and analysis for SCP-reinforced soils is stress concentration ratio according to area replacement ratio. In this paper, the numerical analysis was conducted to investigate characteristics of stress concentration ratio in composite ground. It was found that stress concentration ratio of composite ground is not constant as well as depends on several factors such as area replacement ratio, depth of soft soil, and consolidation process. The values of stress concentration ratio increase during loading stage due to stress transfer of composite soil, and reach up to 2.5∼12 according to area replacement ratio at the end of construction. After the end of consolidation, however, these values are converged to 2.5 to 6.0 irrespective of area replacement ratio due to increase in effective stress of soft soil during consolidation process.

A Study on the Effect of Corporate Ownership Strucrure on Dividend (기업의 소유권구조가 배당에 미치는 영향에 관한 연구)

  • 김형준;이재범
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.187-194
    • /
    • 1996
  • Firms pay cash dividends to reduce the agency costs, and then insider stock ownership affects the dicision of dividend payout ratio. In this study, it is tested that firm's insider stock ownership affects the decision of dividend payout ratio, but the relation between dividend payout ratio and insider stock ownership is nonmonostic. The empirical evidence shows that at low levels of insider stock ownership, increase in the percentage of stock held by insiders decreases dividend payout ratio, but beyond the point of entrenchment increase in the percentage of stock held by insiders increases dividend payout ratio. Thus, the dividend payout ratio and the percentage of stock held by insiders are in a parabolic relation. This implies that there may be a optimal insider stock ownership In lead to the minimun dividend payout ratio.

  • PDF

A Study on Financial Ratio and Prediction of Financial Distress in Financial Markets

  • Lee, Bo-Hyung;Lee, Sang-Ho
    • Journal of Distribution Science
    • /
    • v.16 no.11
    • /
    • pp.21-27
    • /
    • 2018
  • Purpose - This study investigates the financial ratio of savings banks and the effect of the ratio having influence upon bankruptcy by quantitative empirical analysis of forecast model to give material of better management and objective evidence of management strategy and way of advancement and risk control. Research design, data, and methodology - The author added two growth indexes, three fluidity indexes, five profitability indexes, and four activity indexes CAMEL rating to not only the balance sheets but also the income statement of thirty savings banks that suspended business from 2011 to 2015 and collected fourteen financial ratio indexes. IBMSPSS VER. 21.0 was used. Results - Variables having influence upon bankruptcy forecast models included total asset increase ratio and operating income increase ratio of growth index and sales to account receivable ratio, and tangible equity ratio and liquidity ratio of liquidity ratio. The study selected total asset operating ratio, and earning and expenditure ratio from profitability index, and receivable turnover ratio of activity index. Conclusions - Financial supervising system should be improved and financial consumers should be protected to develop saving bank and to control risk, and information on financial companies should be strengthened.

Effect of the C/Si Molar Ratio on the Characteristics of β-SiC Powders Synthesized from TEOS and Phenol Resin (C/Si 몰 비가 TEOS와 페놀수지를 출발원료 사용하여 합성된 β-SiC 분말의 특성에 미치는 영향)

  • Youm, Mi-Rae;Park, Sang-Whan;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • ${\beta}$-SiC powders were synthesized by a carbothermal reduction process using $SiO_2$-C precursors fabricated by a sol-gel process using phenol resin and TEOS as starting materials for carbon and Si sources, respectively. The C/Si molar ratio was selected as an important parameter for synthesizing SiC powders using a sol-gel process, and the effects of the C/Si molar ratio (1.4-3.0) on the particle size, particle size distribution, and yield of the synthesized ${\beta}$-SiC powders were investigated. It was found that (1) the particle size of the synthesized ${\beta}$-SiC powders decreased with an increase in the C/Si molar ratio in the $SiO_2$-C hybrid precursors, (2) the particle size distribution widened with an increase in the C/Si molar ratio, and (3) the yield of the ${\beta}$-SiC powder production increased with an increase in the C/Si molar ratio.