• Title/Summary/Keyword: increase of power generation

Search Result 756, Processing Time 0.027 seconds

The Effect of Power Generation Capacity and Wind Speed on the Efficiency of the Korean Wind Farms (발전용량 및 풍속에 따른 국내 풍력 발전단지의 효율성 분석)

  • Lee, Joong-Woo;Ko, Kwang-Kun;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.30 no.2
    • /
    • pp.97-106
    • /
    • 2013
  • Of the new and renewable energies currently being pursued domestically, wind energy, together with solar photovoltaic energy, is a new core growth driver industry of Korea. As of May 2012, 33 wind farms at a capacity of 347.8MW are in operation domestically. The purpose of this study was to compare and analyze how efficiently each operational wind farm is utilizing its power generation capacity and the weather resource of wind. For this purpose, the study proceeded in 3 phases. In phase 1, ANOVA analysis was performed for each wind farm, thereby categorizing farms according to capacity, region, generator manufacturer, and quantity of weather resources available and comparing and analyzing the differences among their operating efficiency. In phase 2, for comparative analysis of the operating efficiency of each farm, Data Envelopment Analysis (DEA) was used to calculate the efficiency index of individual farms. In the final phase, phase 3, regression analysis was used to analyze the effects of weather resources and the operating efficiency of the wind farm on the power generation per unit equipment. Results shows that for wind power generation, only a few farms had relatively high levels of operating efficiency, with most having low efficiency. Regression analysis showed that for wind farms, a 1 hour increase in wind speeds of at least 3m/s resulted in an average increase of 0.0000045MWh in power generation per 1MW generator equipment capacity, and a unit increase in the efficiency scale was found to result in approximately 0.20MWh power generation improvement per unit equipment.

Parametric Study on High Power SOEC System (고출력 SOEC 시스템의 매개변수 연구)

  • BUI, TUANANH;KIM, YOUNG SANG;GIAP, VAN-TIEN;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.

A Study on the Building of Tuna Farming in Floating Offshore Wind Power Generation Field at East Sea (동해 부유식 해상풍력발전단지 내 참다랑어 양식장 조성에 관한 연구)

  • Choi, Gun Hwan;Kim, Mi Jeong;Jang, Ki Ho;Kim, Hyo Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • We need measures that can come up with alternative about fishery living zone and enhance local acceptance for responding to the increase in the proportion of renewable energy production and construction of 12GW Offshore wind power according to Korea's Renewable Energy 3020 initiative and Korean-version New Deal. In this study, We suggest that differentiation plans of co-location model in connection with offshore wind power generation suitable for the East Sea. The East Sea is an optimal site for building of a floating offshore wind power generation(FOWPG) field. It is expected that economic effects like energy production, aquatic resource development and tourism industrialization by farming bluefin tuna which is high valued fish and suitable for offshore aquaculture on public waters in FOWPG field. And we can confirm that budget reduction, smart management by sharing operation management technology and increase in fishermen income.

Analysis of Effect of HVDC Transmission System on the Transient Stability (HVDC 송전망이 대형발전단지의 과도안정도에 미치는 영향 분석)

  • Jeon, Hyeok-Mo;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The characteristics of Korean power systems are large capacity of generation sites and concentrated load in Seoul metropolitan area. According to the national generation facility plan, more generation facilities are needed to be constructed as the electrical demands are forecasted to increase. Moreover, the size of generation sites are expected to increase, too. Therefore transient stability problems become worse and worse. Recently, the necessity of HVDC has been raised to overcome the difficulty of constructing HVAC transmission lines. This paper shows the analysis of transient stability when HVDC transmission system is added to the power system consisting of large generation sites.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (발전비용의 부하역률 감도를 이용한 효율적인 역률 개선 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.196-198
    • /
    • 2003
  • The low load power factor causes various problems such as the increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and its effects in supplying the reactive power and enhancing the load power factor are analyzed in a small-scale power system. The load power factor sensitivity of the generation cost is applied for determining the locations and capacities of reactive power compensation devices. It is shown that the generation cost can be reduced and the system power factor can be enhanced effectively using the load power factor sensitivity.

  • PDF

The forecast of renewable generation cost in Korea (국내 신재생에너지 원별 발전단가 전망)

  • Kim, Kilsin;Han, Youri
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.140-140
    • /
    • 2011
  • Korea's RPS, which requires that power generation companies obtain a minimum percentage of their generation by using renewable energy, will take effect in 2012. Based on the first-year law enforcement, generation companies have to satisfy 2% of RPS compliance ratio in 2012. Then, the required RPS compliance ratio will increase up to 10% in 2022. Thus generation companies need to construct power plants that utilize various types of renewable energy sources such as PV and wind power. This work is aimed to analyze the cost of such a renewable power source in terms of capital cost, capacity factor, and fuel cost. We provide the analytical expectation on the renewable power generation cost of 2012 focusing on PV, onshore/offshore wind, fuel cell, and IGCC, which are focused by government policy.

  • PDF

Research on the Effect of Interconnected Distributed Wind Power Generation(225[kV], AC Link Method) on Power Quality in System (연계형 풍력발전설비(225[kV], AC 링크방식)가 전력계통의 전원 품질에 미치는 영향에 관한 연구 분석)

  • Na, Chae-Dong;Park, Jung-Shin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.147-153
    • /
    • 2010
  • When small scale wind and solar power generation systems are connected to conventional power distribution system. It is worried that it can affect the quality of electricity such as voltage variation, power factor, frequency, harmonics and flicker. Therefore, in this research, in order to investigate the effects of wind power generation equipments(AC link method) on electrical power quality, when they are connected to distribution system. Power quality analyzer was installed respectively at the front side of power conversion system of conventional wind generation system and secondary side of consumer's power supply at distribution line. Measurements on power quality were performed and the effects of the wind generation system on distribution system were analyzed when it was and was not operated. The results show that 0.34[%] increase on voltage variation, 0.145 increase on current crest factor and 0.6[$^{\circ}$] deviation on phase difference when the power generation system was operated.

Sub-Synchronous Range of Operation for a Wind Driven Double-Fed Induction Generator

  • Saleh, Mahmoud Abdel Halim;Eskander, Mona Naguib
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.72-78
    • /
    • 2010
  • In this paper the operation of a double-fed wound-rotor induction machine, coupled to a wind turbine, as a generator at sub-synchronous speeds is investigated. A novel approach is used in the analysis, namely, the rotor power flow approach. The conditions necessary for operating the machine as a double-fed induction generator (DFIG) are deduced. Formulae describing the factors affecting the range of sub-synchronous speeds within which generation occurs are deduced. The variations in the magnitude and phase angle of the voltage injected to the rotor circuit as the speed of the machine changes to achieve generation at the widest possible sub-synchronous speed range is presented. Also, the effect of the rotor parameters on the generation range is presented. The analysis proved that the generation range could increase from sub-synchronous to super-synchronous speeds, which increases the amount of energy captured by the wind energy conversion system (WECS) as result of utilizing the power available in the wind at low wind speeds.

Technology Development for Stabilization of PV Independent System (태양광발전시스템 독립계통 안정화 기술개발)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.181-186
    • /
    • 2019
  • In order to reduce the fossil fuels consumed in conventional commercial independent diesel generators in the same environment as the island area, it is necessary to develop a photovoltaic system that will bear more than 40% of the independent system capacity. For this development, it is necessary to develop a high-capacity inverter that can improve the stability of the independent system installed in the island area and supply high-quality power to the load. In addition, the EMS power generation control system for the independent grid photovoltaic power generation system is a parallel operation power control system of the diesel generator connected with the solar power generation system. It controls the output of the diesel generator according to the load ratio and the solar power generation, A stable supply system is needed. This independent grid photovoltaic generation system can increase the solar power supply to the independent system area and increase the power stability of the independent system and further reduce the use of fossil fuel due to the ineffective power control of the independent system. It is expected that the economy will be secured early.

A Study on the Efficiency Improvement of the Power Generation Process Using New Working Fluids Composed of Methane, Ethylene, Ethane, and Propane and the Cold Heat Contained in the Liquefied Natural Gas (메탄, 에틸렌, 에탄 및 프로판으로 구성된 새로운 작동 유체와 액화 천연가스의 냉열을 활용한 발전 공정의 효율 향상에 대한 연구)

  • JUNGHO CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.318-323
    • /
    • 2024
  • In this paper, computer modeling works have been performed for the power generation Rankine cycle using new working fluids and liquefied natural gas (LNG) cold heat. PRO/II with PROVISION released January 2023 from AVEVA company was used, and Peng-Robinson equation of the state model with Twu's alpha function was selected for the modeling of the power generation cycle. Optimal working fluid composition was determined to maximize LNG cold heat to increase power generation efficiency and net power production.