• 제목/요약/키워드: increase of power generation

검색결과 755건 처리시간 0.028초

태양광발전 시스템의 일사량에 따른 전력 패턴 분석 (Analysis of Power Pattern According to Irradiation for Photovoltaic Generation System)

  • 이경섭
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.602-608
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. As I-V characteristics according to a temperature range of 10~50[$^{\circ}C$], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature. As output power characteristics according to a temperature range of 10~50[$^{\circ}C$], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power. As I-V characteristics according to a irradiation range of 100~900 [$W/m^2$], voltage and current were increased with an increase in irradiation. The result is thought of as an increase in output power with increasing irradiation. As output power characteristics according to a irradiation range of 100~900 [$W/m^2$], output power was increased with increasing irradiation. This result corresponds well to the related equation on irradiation and output power.

전력산업의 온실가스 배출요인 분석 및 감축 방안 연구 (Decomposition Analysis of CO2 Emissions of the Electricity Generation Sector in Korea using a Logarithmic Mean Divisia Index Method)

  • 조용성
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.357-367
    • /
    • 2017
  • Electricity generation in Korea mainly depends on thermal power and nuclear power. Especially the coal power has led to the increase in $CO_2$ emissions. This paper intends to analyze the current status of $CO_2$ emissions from electricity generation in Korea during the period 1990~2016, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in $CO_2$ emissions. The main results as follows: first, $CO_2$ emission from electricity generation has increased by $165.9MtCO_2$ during the period of analysis. Coal products is the main fuel type for thermal power generation, which accounts about 73% $CO_2$ emissions from electricity generation. Secondly, the increase of real GDP is the most important contributor to increase $CO_2$ emissions from electricity generation. The carbon intensity and the electricity intensity also affected the increase in $CO_2$ emission, but the energy intensity effect and the dependency of thermal power effect play the dominant role in decreasing $CO_2$ emissions.

발전용 천연가스 일일수요 예측 모형 연구-평일수요를 중심으로

  • 정희엽;박호정
    • 한국태양광발전학회지
    • /
    • 제4권2호
    • /
    • pp.45-53
    • /
    • 2018
  • Natural gas demand for power generation continued to increase until 2013 due to the expansion of large-scale LNG power plants after the black-out of 2011. However, natural gas demand for power generation has decreased sharply due to the increase of nuclear power and coal power generation. But demand for power generation has increased again as energy policies have changed, such as reducing nuclear power and coal power plants, and abnormal high temperatures and cold waves have occurred. If the gas pipeline pressure can be properly maintained by predicting these fluctuations, it can contribute to enhancement of operation efficiency by minimizing the operation time of facilities required for production and supply. In this study, we have developed a regression model with daily power demand and base power generation capacity as explanatory variables considering characteristics by day of week. The model was constructed using data from January 2013 to December 2016, and it was confirmed that the error rate was 4.12% and the error rate in the 90th percentile was below 8.85%.

  • PDF

계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술 (Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources)

  • 박정민
    • 통합자연과학논문집
    • /
    • 제16권4호
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성 (Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System)

  • 서충길;원종운
    • 동력기계공학회지
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).

태양광 발전의 분포 변화: 시군구 단위에서의 분석 (Change in Spatial Distribution of Photovoltaic Power Generation )

  • 이정섭;이강원;지상현
    • 한국경제지리학회지
    • /
    • 제25권4호
    • /
    • pp.484-498
    • /
    • 2022
  • 이 연구의 목적은 전국 229개 시군구를 공간 단위로 설정하여 태양광 발전의 입지, 분포 그리고 변화를 분석하는 것이다. 이를 위해서 첫째, 2020년 시군구별 발전량과 발전설비 용량을 통해서 태양광 발전의 분포를 분석했고, 둘째 2017년부터 2021년까지 시군구별 발전설비 증가량을 확인하여 시계열적 변화를 추적했다. 분석 결과, 발전량, 발전설비 용량 및 증가량 모두 몇몇 시군구에 집중되었는데, 그 정도는 상위 5개 시군구가 차지하는 비중이 12% 이상, 상위 10개 및 20개 시군구로는 각각 20%와 33% 이상이었고, 태양광 발전에 대한 지니 계수는 약 0.6이었다. 따라서 시군구 단위에서 태양광 발전의 불균등한 분포가 확인되었다.

400W 수직형 풍력발전시스템의 개발에 관한 연구 (A Study on Development of Wind Power 400W Generation System with Vertical axis Type)

  • 윤정필;최장균;차인수
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

GIS기법을 이용한 일사량 모델링 (Insolation Modeling Using by GIS)

  • 김병우;강인준;김상석;곽재하
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.359-361
    • /
    • 2010
  • This research is thing about location choice of solar power generation equipment to increase efficiency of solar power generation equipment. In the case of current solar power generation equipment, location of large scale solar power generation equipment facilities choice or, have localized in small scale equipment by individual. This research uses various climatic elements of small scale area for efficient location choice of solar power generation facilities and quantity of solar radiation did back-tracking.

  • PDF

신.재생에너지전원의 발전차액지원제도 적용을 위한 발전원가 적용범위 산정 (Evaluation of renewable generation cost for designing the purchasing tariff system about renewable energy power)

  • 조인승;이창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.840-842
    • /
    • 2005
  • Since 2001, Korea government has been purchasing the generation from renewable generation facilities with the higher incentive prices than market price in order to increase the penetration of renewable energies. Generally, the incentive purchase tariff is calculated on the base of the generation cost of renewable power facilities. This paper constructs the input data for economic analysis and evaluates the generation cost of PV, wind power, LFG and small hydro power using LCCA model.

  • PDF

Current Status of Solar Power Generation in Jinju City Close to the South Coast and Jeonju City Close to the West Coast

  • Kwang Pyo Hong;Yun-Hi Kim;Gi-Hwan Kim
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.62-69
    • /
    • 2023
  • Recently, renewable energy has been increasing in Korea to reduce greenhouse gas, and solar power generation, which accounts for the largest proportion of renewable energy, is noteworthy. The government policy will further increase solar power generation. In order to implement the policy, it is important to understand the current status of domestic solar power generation facilities. Therefore, the current status of solar power generation facilities in Jinju city close to the south coast and Jeonju city close to the west coast was investigated and compared. By 2020, 618 solar power plants had been installed in Jeonju city and 269 in Jinju city. However, there is not much difference in the amount of solar power generation for business at 9 GWh. The reason is that Jinju city has a lower population density than Jeonju city, so there are enough places to install a large-scale solar power facilities with a large power generation capacity. Monthly solar power generation was the highest in April in both Jeonju city and Jinju city and the lowest in January. In particular, in December, Jinju city showed more solar power generation than Jeonju city because of the large amount of insolation, long sunshine hours, and few clouds.