• 제목/요약/키워드: incompressible turbulent flow

검색결과 159건 처리시간 0.026초

CFD에 의한 2차원 지면 효과익 주위의 난류유동계산 (Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect)

  • 전호환;장용훈;신명수
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.28-40
    • /
    • 2002
  • 지면효과를 받는 2차원 날개 주위의 난류유동을 비압축성 RANS(Reynolds Averaged Navier Stokes) 방정식과 유한차분법(Finite Difference Method)을 이용하여 해석하였다. 높은 레이놀즈수에 효과적인 Baldwin-Lomax 난류모델을 사용하였다. 본 연구의 목적은 지면효과를 받는 2차원 날개단면에서의 각기 다른 두 바닥 경계조건(이동지면, 고정지면)에 따른 유동의 특성을 파악하는 것이다. Clark-Y(t/C 11.7%)날개단면의 계산 결과와 발표된 계산결과 및 실험 값과의 비교를 통해 본 수치해석 프로그램의 정확성을 검증하였다. NACA4412 날개단면에 대해 지면과의 높이변화에 대해서 두 바닥 경계조건에 대해서 유동해석을 수행하였다 계산결과에 의하면 이동지면과 고정지면에 대해서 양력과 모멘트는 별 차이가 없으나 항력은 고정지면의 경우가 이동지면의 경우보다 다소 작았다. 따라서 풍동시험에서 고정지면의 결과는 이동지면에 비해 상대적으로 저항이 낮게 평가될 가능성이 있다고 본다.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션 (CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model)

  • 김동현;전규목;박종천;신명수
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).

주행조건에서의 자동차 모델 항력에 대한 수치해석적 연구 (Numerical Study on the Drag of a Car Model under Road Condition)

  • 김범준;강성우;최형권;유정열
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1182-1190
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for large-scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady flow computation of the incompressible Navier-Stokes equation, and Smagorinsky LES model is chosen for turbulent flow computation. Both METIS and MPI Libraries are used for domain partitioning and data communication between processors, respectively. Tiburon model of Hyundai Motor Company is chosen as the computational model at Re=7.5 $\times$ 10$^{5}$ , which is based on the car height. The calculation is carried out under both the wind tunnel condition and the road condition using IBM SP parallel architecture at KISTI Super Computing Center. Compared with the existing experimental data, both the velocity and pressure fields are predicted reasonably well and the drag coefficient is in good agreement. Furthermore, it is confirmed that the drag under the road condition is smaller than that under the wind-tunnel condition.

자유표면을 포함한 선체주위 난류유동 해석 코드 개발 (Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태;반석호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구 (Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet)

  • 이재범;서영섭;이정희;최영기
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.

프로펠러 회전류에서 작동하는 방향타의 받음각 특성 연구 (Study on the Angle-of-Attack Characteristics of the Rudder in Rotating Propeller Flow)

  • 정재환;백동근;윤현식;김기섭;백부근
    • 대한조선학회논문집
    • /
    • 제50권6호
    • /
    • pp.421-428
    • /
    • 2013
  • This study aims at numerically investigating the angle of attack characteristics of the rudder behind a rotating propeller. The rotating propeller of 5 blades and the full spade rudder are placed in the numerical water tunnel with a uniform flow condition to consider propeller-rudder interaction. The turbulence closure model is employed to simulate the three-dimensional unsteady incompressible viscous turbulent flow around the propeller and the rudder. The present numerical method are well verified by comparing with the experimental results. In order to identify the dependence of the angle of attack of the rudder on the rudder angle, a wide range of rudder angles is considered. The present study carried out the quantitative and qualitative analysis of the angle of attack in terms of the pressure distribution, streamlines and the evaluation of the flow incidence, resulting in that the angle of attack increases as we move from the root and the tip to the center of the rudder, regardless of the rudder angle. The distribution of the angle-of-attack along the span is strongly affected by rotating propeller flow and rudder angle. Consequently, the distribution of the angle-of-attack of the oncoming flow against the rudder leading edge plays a role in determination of rudder performance.

Wavy 형상 적용에 따른 대 각도에서의 러더 성능에 대한 수치해석 연구 (A Numerical Performance Study on Rudder with Wavy Configuration at High Angles of Attack)

  • 태현준;신용진;김범준;김문찬
    • 대한조선학회논문집
    • /
    • 제54권1호
    • /
    • pp.18-25
    • /
    • 2017
  • This study deals with numerically comparing performance according to rudder shape called 'Twisted rudder and Wavy twisted rudder'. In comparison with conventional rudder, rudder with wavy shape has showed a better performance at high angles of attack($30^{\circ}{\sim}40^{\circ}$) due to delaying stall. But most of study concerned with wavy shape had been performed in uniform flow condition. In order to identify the characteristics behind a rotating propeller, the present study numerically carries out an analysis of resistance and self-propulsion for KCS with twisted rudder and wavy twisted rudder. The turbulence closure model, Realizable $k-{\epsilon}$, is employed to simulate three-dimensional unsteady incompressible viscous turbulent and separation flow around the rudder. The simulation of self-propulsion analysis is performed in two step, because of finding optimization case of wavy shape. The first step presents there are little difference between twisted rudder and case of H_0.65 wavy twisted rudder in delivered power. So two kind of rudders are employed from first step to compare lift-to-drag ratio and torque at high angles of attack. Consequently, the wavy twisted rudder is presented as a possible way of delaying stall, allowing a rudder to have a better performance containing superior lift-to-drag ratio and torque than twisted rudder at high angles of attack. Also, as we indicate the flow visualization, check the quantity of separation flow around the rudder.

파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구 (Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes)

  • 박상협;김상근;하만영
    • 대한기계학회논문집B
    • /
    • 제37권11호
    • /
    • pp.999-1007
    • /
    • 2013
  • 본 연구에서는 다양한 형상의 파이프에 대한 압력강하와 열전달 특성을 수치적으로 해석하였다. 원형 파이프에서부터 타원형, 톱니형, 비틀어진 형태와 같은 다양한 형상의 파이프를 3차원으로 수치해석을 통해 비교하였다. 수치해석은 층류에서 난류영역까지 계산을 수행하였다. 파이프 유동해석은 완전발달된 영역에서 정상상태, 비압축성 RANS수식을 이용하여 계산하였다. 유동의 손실은 friction factor를 통해 비교하였고, 열전달 성능은 각 파이프 표면에서의 Colburn factor를 통해 비교하였다. 종합적인 열유동 성능평가는 Volume and Area goodness factor를 통해 평가하였다. 열전달 성능을 향상시키고 유동의 손실은 최소화하는 최적의 형상을 연구하였다.

버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 - (A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme -)

  • 김민호;국종영;천인범
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.