DOI QR코드

DOI QR Code

파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구

Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes

  • 투고 : 2013.05.10
  • 심사 : 2013.09.16
  • 발행 : 2013.11.01

초록

본 연구에서는 다양한 형상의 파이프에 대한 압력강하와 열전달 특성을 수치적으로 해석하였다. 원형 파이프에서부터 타원형, 톱니형, 비틀어진 형태와 같은 다양한 형상의 파이프를 3차원으로 수치해석을 통해 비교하였다. 수치해석은 층류에서 난류영역까지 계산을 수행하였다. 파이프 유동해석은 완전발달된 영역에서 정상상태, 비압축성 RANS수식을 이용하여 계산하였다. 유동의 손실은 friction factor를 통해 비교하였고, 열전달 성능은 각 파이프 표면에서의 Colburn factor를 통해 비교하였다. 종합적인 열유동 성능평가는 Volume and Area goodness factor를 통해 평가하였다. 열전달 성능을 향상시키고 유동의 손실은 최소화하는 최적의 형상을 연구하였다.

The present work reports numerical results of the pressure drop and heat transfer characteristics of pipes with various shapes such as circular, elliptical, circumferential wavy and twisted using a three-dimensional simulation. Numerical simulations are calculated for laminar to turbulent flows. The fully developed flow in pipes was modeled using steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The friction and Colburn factor of each pipe are compared with those of a circular tube. The overall flow and heat transfer calculations are evaluated by the volume and area goodness factor. Finally, the objective of the investigation is to find a pipe shape that decreases the pressure loss and increases the heat transfer coefficient.

키워드

참고문헌

  1. Royal, J. H. and Burgles, A. E., 1975, "Augmentation of Horizontal In-Tube Condensation by Means of Twisted-Tape Inserts and Internally Finned Tubes," Heat and Mass Transfer, Vol. 100, No. 1, pp. 17-24.
  2. Smith, E., Chinaruk, T. and Pongjet, P., 2006, "Experimental Investigation of Heat Transfer and Flow Friction in a Circular Tube Fitted with Regularly Spaced Twisted Tape Elements," Heat and Mass Transfer, Vol. 33, No. 10, pp. 1225-1233. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.002
  3. Azer, N. Z. and Said, S. A., 1983, "Augmentation of Condensation Heat Tranfer of R-113 by Internally- Finned Tubes and Twisted-Taped Inserts," Heat Transfer, Vol. 5, pp. 33-38.
  4. Whitham, J. M., 1986, "The Effects of Retarders in Fire Tubes of Steam Boilers," The American Society for Naval Engineers, Vol. 8, No. 4, pp. 779-781.
  5. Klepper, O. H., 1972, "Heat Transfer Performance of Short Twisted Tapes," American Institute of Chemical Engineers, Vol. 35, pp. 1-24.
  6. Manglik, R. M. and Bergles, A. E., 1993, "Heat Transfer and Pressure Drop Correlations for Twisted- Tape Inserts in Isothermal Tubes, Part I: Laminar Flows," Heat Transfer, Vol. 115, pp. 881-889. https://doi.org/10.1115/1.2911383
  7. Keffer, J. E., Shah, R. K. and Ganic, E. N., 1991, Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Elsevier Science Publishing, New York, pp. 661-667.
  8. Reisbig, R. L., 1974, "Condensing Heat Transfer Augmentation Inside Splined Tubes," Thermophysics and Heat Trnasfer, Vol. 12, pp. 74-81.
  9. Chang, K. S., Choi, J. S. and Kim, J, S., 1988, "Laminar Fluid Flow in a Twisted Elliptic Tube," Trans. Korean Soc. Mech. Eng. B, Vol.2, No. 1, pp. 44-51.
  10. Shohel Mahmud., Sadrul Islam, A. K. M. and Feroz, C. M., 2003, "Flow and Heat Transfer Characteristics Inside a Wavy Tube," Heat and Mass Transfer, Vol. 39, pp. 387-393. https://doi.org/10.1007/s00231-002-0369-9
  11. Nushimura, T., Bian, Y. N., Matsumoto, Y. and Kunitsugu, K., 2003, "Fluid Flow and Mass Transfer Characteristics in a Sinusoidal Wavy-Walled Tube at Moderate Reynolds Numbers for Steady Flow," Heat and Mass Transfer, Vol. 39, pp. 239-248. https://doi.org/10.1007/s00231-002-0304-0
  12. Li, Z., Sheng, Y. and Hong, X., 2012, "Experimental Study on Condensation Heat Transfer Characteristics of Steam on Horizontal Twisted Elliptical Tubes," Applied Energy, Vol. 97, pp. 881-887. https://doi.org/10.1016/j.apenergy.2011.11.085
  13. Tan, X. H., Zhu, D. S., Zhou, G. Y. and Zeng, L. D., 2012, "Experimental and Numerical Study of Convective Heat Transfer and Fluid Flow in Twisted Oval Tubes," Heat and Mass Transfer, Vol. 55, pp. 4701-4710. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.030
  14. Shah, R. K. and London, A. L., 1978, "Laminar Flow Forced Convection in Ducts," Fluid Engineering, Vol. 102, No. 2, pp. 256-257.
  15. Doo, J. H., Yoon, H. S. and Ha, M. Y., 2010, "Study on Improvement of Compactness of a Plate Heat Exchanger Using a Newly Designed Primary Surface," Heat and Mass Transfer, Vol. 53, pp. 5733-5746 https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.066
  16. ANSYS fluent 14.5 user guide
  17. Incropera, F. P., DeWitt, D. P., Bergman, T. L. and Lavine, A. S., 2007, "Introduction to Heat Transfer, 5th ed," John Wiley & Sons, Inc, Notre Dame, pp. 504-551.

피인용 문헌

  1. Study on Analysis Method for Fire Safety Test of Hydrant Reducing Valve for Offshore Plant vol.38, pp.6, 2014, https://doi.org/10.3795/KSME-A.2014.38.6.601